1
|
Taketa DA, Cengher L, Rodriguez D, Langenbacher AD, De Tomaso AW. Genotype-specific expression of uncle fester suggests a role in allorecognition education in a basal chordate. Integr Comp Biol 2024:icae107. [PMID: 38982324 DOI: 10.1093/icb/icae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Histocompatibility is the ability to discriminate between self and non-self tissues, and has been described in species throughout the metazoa. Despite its universal presence, histocompatibility genes utilized by different phyla are unique- those found in sponges, cnidarians, ascidians and vertebrates are not orthologous. Thus, the origins of these sophisticated recognition systems, and any potential functional commonalities between them are not understood. We are studying histocompatibility in the botryllid ascidians, members of the chordate subphylum, Tunicata, which provide a powerful model to understand both the origins and functional aspects of this process. Histocompatibility in the botryllids occurs at the tips of an extracorporeal vasculature that come into contact when two individuals grow into proximity. If compatible, the vessels will fuse, forming a parabiosis between the two individuals. If incompatible, the two vessels will reject- an inflammatory reaction that results in melanin scar formation at the point of contact, blocking anastomosis. Compatibility is determined by a single, highly polymorphic locus called the fuhc with the following rules: individuals that share one or both fuhc alleles will fuse, while those who share neither will reject. The fuhc locus encodes at least six proteins with known roles in allorecognition. One of these genes, called uncle fester, is necessary and sufficient to initiate the rejection response. Here we report the existence of genotype-specific expression levels of uncle fester, differing by up to 8-fold at the mRNA-level, and that these expression levels are constant and maintained for the lifetime of an individual. We also found that these differences had functional consequences: the expression level of uncle fester correlated with the speed and severity of the rejection response. These findings support previous conclusions that uncle fester levels modulate the rejection response, and may be responsible for controlling the variation observed in the timing and intensity of the reaction. The maintenance of genotype specific expression of uncle fester is also evidence of an education process reminiscent of that which occurs in mammalian Natural Killer (NK) cells. In turn, this suggests that while histocompatibility receptors and ligands evolve via convergent evolution, they may utilize conserved intracellular machinery to interpret binding events at the cell surface.
Collapse
Affiliation(s)
- Daryl A Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
| | - Liviu Cengher
- Department of Molecular, Cellular and Developmental Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
| | - Adam D Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California - Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Taketa DA, Cengher L, Rodriguez D, Langenbacher AD, De Tomaso AW. Genotype-specific expression of uncle fester suggests a role in allorecognition education in a basal chordate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580188. [PMID: 38405917 PMCID: PMC10888813 DOI: 10.1101/2024.02.13.580188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Histocompatibility is the ability to discriminate between self and non-self tissues, and has been described in species throughout the metazoa. Despite its universal presence, histocompatibility genes utilized by different phyla are unique- those found in sponges, cnidarians, ascidians and vertebrates are not orthologous. Thus, the origins of these sophisticated recognition systems, and any potential functional commonalities between them are not understood. A well-studied histocompatibility system exists in the botryllid ascidians, members of the chordate subphylum, Tunicata, and provides an opportunity to do so. Histocompatibility in the botryllids occurs at the tips of an extracorporeal vasculature that come into contact when two individuals grow into proximity. If compatible, the vessels will fuse, forming a parabiosis between the two individuals. If incompatible, the two vessels will reject- an inflammatory reaction that results in melanin scar formation at the point of contact, blocking anastomosis. Compatibility is determined by a single, highly polymorphic locus called the fuhc with the following rules: individuals that share one or both fuhc alleles will fuse, while those who share neither will reject. The fuhc locus encodes multiple proteins with roles in allorecognition, including one called uncle fester, which is necessary and sufficient to initiate the rejection response. Here we report the existence of genotype-specific expression levels of uncle fester, differing by up to 8-fold at the mRNA-level, and that these expression levels are constant and maintained for the lifetime of an individual. We also found that these differences had functional consequences: the expression level of uncle fester correlated with the speed and severity of the rejection response. These findings support previous conclusions that uncle fester levels modulate the rejection response, and may be responsible for controlling the variation observed in the timing and intensity of the reaction. The maintenance of genotype specific expression of uncle fester is also evidence of an education process reminiscent of that which occurs in mammalian Natural Killer (NK) cells. In turn, this suggests that while histocompatibility receptors and ligands evolve via convergent evolution, they may utilize conserved intracellular machinery to interpret binding events at the cell surface.
Collapse
Affiliation(s)
- Daryl A. Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California – Santa Barbara, Santa Barbara, CA 93106, USA
| | - Liviu Cengher
- Department of Molecular, Cellular and Developmental Biology, University of California – Santa Barbara, Santa Barbara, CA 93106, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California – Santa Barbara, Santa Barbara, CA 93106, USA
| | - Adam D. Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California – Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California – Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Transcriptomic Profiling of the Allorecognition Response to Grafting in the Demosponge Amphimedon queenslandica. Mar Drugs 2017; 15:md15050136. [PMID: 28492509 PMCID: PMC5450542 DOI: 10.3390/md15050136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 01/10/2023] Open
Abstract
Sponges, despite their simple body plan, discriminate between self and nonself with remarkable specificity. Sponge grafting experiments simulate the effects of natural self or nonself contact under laboratory conditions. Here we take a transcriptomic approach to investigate the temporal response to self and nonself grafts in the marine demosponge Amphimedon queenslandica. Auto- and allografts were established, observed and sampled over a period of three days, over which time the grafts either rejected or accepted, depending on the identity of the paired individuals, in a replicable and predictable manner. Fourteen transcriptomes were generated that spanned the auto- and allograft responses. Self grafts fuse completely in under three days, and the process appears to be controlled by relatively few genes. In contrast, nonself grafting results in a complete lack of fusion after three days, and appears to involve a broad downregulation of normal biological processes, rather than the mounting of an intense defensive response.
Collapse
|
4
|
Manni L, Gasparini F, Hotta K, Ishizuka KJ, Ricci L, Tiozzo S, Voskoboynik A, Dauga D. Ontology for the asexual development and anatomy of the colonial chordate Botryllus schlosseri. PLoS One 2014; 9:e96434. [PMID: 24789338 PMCID: PMC4006837 DOI: 10.1371/journal.pone.0096434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.
Collapse
Affiliation(s)
- Lucia Manni
- Department of Biology, University of Padova, Padova, Italy
| | | | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kouhoku-ku, Yokohama, Japan
| | - Katherine J. Ishizuka
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | - Lorenzo Ricci
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Stefano Tiozzo
- Centre National de la Recherche Scientifique, Sorbonne Universités, Université Pierre et Marie Curie (University of Paris 06), Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Hopkins Marine Station, Stanford, California, United States of America
| | | |
Collapse
|
5
|
|
6
|
Gasparini F, Shimeld SM. Analysis of a botryllid enriched-full-length cDNA library: insight into the evolution of spliced leader trans-splicing in tunicates. Dev Genes Evol 2011; 220:329-36. [PMID: 21331664 DOI: 10.1007/s00427-011-0351-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/24/2011] [Indexed: 01/22/2023]
Abstract
In some animals, mRNA may be modified after transcription by the addition of a 5' spliced leader sequence. This is known as spliced leader (SL) trans-splicing, and is of uncertain function and evolutionary origin. Here, we report the identification of SL trans-splicing in the colonial ascidian Botryllus schlosseri. Combining our own expressed sequence tag (EST) data with additional data from GenBank, we identify the dominant spliced leader sequence and show it to be similar to that of other ascidians and to that of Oikopleura dioica, a basally diverging tunicate. Gene Ontology analysis of B. schlosseri ESTs with and without a 5' spliced leader shows that genes encoding ribosomal proteins tend not to be trans-spliced, a character shared with the ascidian Ciona intestinalis. We also examine individual cases of genes that produce mRNAs that are SL trans-spliced in B. schlosseri but not in C. intestinalis. We conclude that SL trans-splicing evolved early in the tunicate lineage and shows stability over considerable evolutionary time. However, SL trans-splicing may be gained or lost in individual genes.
Collapse
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Italy.
| | | |
Collapse
|