1
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
2
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|
3
|
Jones BG, Sealy RE, Penkert RR, Surman SL, Maul RW, Neale G, Xu B, Gearhart PJ, Hurwitz JL. Complex sex-biased antibody responses: estrogen receptors bind estrogen response elements centered within immunoglobulin heavy chain gene enhancers. Int Immunol 2020; 31:141-156. [PMID: 30407507 DOI: 10.1093/intimm/dxy074] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023] Open
Abstract
Nuclear hormone receptors including the estrogen receptor (ERα) and the retinoic acid receptor regulate a plethora of biological functions including reproduction, circulation and immunity. To understand how estrogen and other nuclear hormones influence antibody production, we characterized total serum antibody isotypes in female and male mice of C57BL/6J, BALB/cJ and C3H/HeJ mouse strains. Antibody levels were higher in females compared to males in all strains and there was a female preference for IgG2b production. Sex-biased patterns were influenced by vitamin levels, and by antigen specificity toward influenza virus or pneumococcus antigens. To help explain sex biases, we examined the direct effects of estrogen on immunoglobulin heavy chain sterile transcript production among purified, lipopolysaccharide-stimulated B cells. Supplemental estrogen in B-cell cultures significantly increased immunoglobulin heavy chain sterile transcripts. Chromatin immunoprecipitation analyses of activated B cells identified significant ERα binding to estrogen response elements (EREs) centered within enhancer elements of the immunoglobulin heavy chain locus, including the Eµ enhancer and hypersensitive site 1,2 (HS1,2) in the 3' regulatory region. The ERE in HS1,2 was conserved across animal species, and in humans marked a site of polymorphism associated with the estrogen-augmented autoimmune disease, lupus. Taken together, the results highlight: (i) the important targets of ERα in regulatory regions of the immunoglobulin heavy chain locus that influence antibody production, and (ii) the complexity of mechanisms by which estrogen instructs sex-biased antibody production profiles.
Collapse
Affiliation(s)
- Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Geoff Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, USA
| | - Beisi Xu
- Computational Biology, St. Jude Children's Research Hospital, Memphis, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
4
|
Laffleur B, Basu U. Biology of RNA Surveillance in Development and Disease. Trends Cell Biol 2019; 29:428-445. [PMID: 30755352 DOI: 10.1016/j.tcb.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
The 'RNA world', in which RNA molecules stored information and acquired enzymatic properties, has been proposed to have preceded organism life. RNA is now recognized for its central role in biology, with accumulating evidence implicating coding and noncoding (nc)RNAs in myriad mechanisms regulating cellular physiology and disequilibrium in transcriptomes resulting in pathological conditions. Nascently synthesized RNAs are subjected to stringent regulation by sophisticated RNA surveillance pathways. In this review, we integrate these pathways from a developmental viewpoint, proposing RNA surveillance as the convergence of mechanisms that ensure the exact titration of RNA molecules in a spatiotemporally controlled manner, leading to development without the onset of pathological conditions, including cancer.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation. Nat Commun 2017; 8:16067. [PMID: 28677680 PMCID: PMC5504274 DOI: 10.1038/ncomms16067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
In germinal centres (GC) mature B cells undergo intense proliferation and immunoglobulin gene modification before they differentiate into memory B cells or long-lived plasma cells (PC). GC B-cell-to-PC transition involves a major transcriptional switch that promotes a halt in cell proliferation and the production of secreted immunoglobulins. Here we show that the CCCTC-binding factor (CTCF) is required for the GC reaction in vivo, whereas in vitro the requirement for CTCF is not universal and instead depends on the pathways used for B-cell activation. CTCF maintains the GC transcriptional programme, allows a high proliferation rate, and represses the expression of Blimp-1, the master regulator of PC differentiation. Restoration of Blimp-1 levels partially rescues the proliferation defect of CTCF-deficient B cells. Thus, our data reveal an essential function of CTCF in maintaining the GC transcriptional programme and preventing premature PC differentiation. Activated B cells differentiate into antibody-producing plasma cells in the germinal centre in secondary lymphoid organs. Here the authors show that this differentiation process and related transcription programs are modulated by the transcription factor CTCF, partly by suppressing the premature expression of Blimp-1.
Collapse
|
6
|
Sette M, D'Addabbo P, Kelly G, Cicconi A, Micheli E, Cacchione S, Poma A, Gargioli C, Giambra V, Frezza D. Evidence for a quadruplex structure in the polymorphic hs1.2 enhancer of the immunoglobulin heavy chain 3' regulatory regions and its conservation in mammals. Biopolymers 2017; 105:768-78. [PMID: 27287611 PMCID: PMC5516150 DOI: 10.1002/bip.22891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/01/2016] [Indexed: 11/09/2022]
Abstract
Regulatory regions in the genome can act through a variety of mechanisms that range from the occurrence of histone modifications to the presence of protein-binding loci for self-annealing sequences. The final result is often the induction of a conformational change of the DNA double helix, which alters the accessibility of a region to transcription factors and consequently gene expression. A ∼300 kb regulatory region on chromosome 14 at the 3' end (3'RR) of immunoglobulin (Ig) heavy-chain genes shows very peculiar features, conserved in mammals, including enhancers and transcription factor binding sites. In primates, the 3'RR is present in two copies, both having a central enhancer named hs1.2. We previously demonstrated the association between different hs1.2 alleles and Ig plasma levels in immunopathology. Here, we present the analysis of a putative G-quadruplex structure (tetraplex) consensus site embedded in a variable number tandem repeat (one to four copies) of hs1.2 that is a distinctive element among the enhancer alleles, and an investigation of its three-dimensional structure using bioinformatics and spectroscopic approaches. We suggest that both the role of the enhancer and the alternative effect of the hs1.2 alleles may be achieved through their peculiar three-dimensional-conformational rearrangement. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 768-778, 2016.
Collapse
Affiliation(s)
- Marco Sette
- Department of Chemical Sciences and Technology, University of Roma "Tor Vergata,", Roma, Italy
| | - Pietro D'Addabbo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Geoffrey Kelly
- MRC Biomedical NMR Centre, The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Alessandro Cicconi
- Department of Biology and Biotechnology, Sapienza University, Roma, Italy.,Institute Pasteur-Fondazione Cenci-Bolognetti, Roma, Italy
| | - Emanuela Micheli
- Department of Biology and Biotechnology, Sapienza University, Roma, Italy.,Institute Pasteur-Fondazione Cenci-Bolognetti, Roma, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University, Roma, Italy.,Institute Pasteur-Fondazione Cenci-Bolognetti, Roma, Italy
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cesare Gargioli
- Department of Biology, University of Roma "Tor Vergata,", Roma, Italy
| | | | - Domenico Frezza
- Department of Biology, University of Roma "Tor Vergata,", Roma, Italy
| |
Collapse
|
7
|
Birshtein BK. Epigenetic Regulation of Individual Modules of the immunoglobulin heavy chain locus 3' Regulatory Region. Front Immunol 2014; 5:163. [PMID: 24795714 PMCID: PMC4000994 DOI: 10.3389/fimmu.2014.00163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
The Igh locus undergoes an amazing array of DNA rearrangements and modifications during B cell development. During early stages, the variable region gene is constructed from constituent variable (V), diversity (D), and joining (J) segments (VDJ joining). B cells that successfully express an antibody can be activated, leading to somatic hypermutation (SHM) focused on the variable region, and class switch recombination (CSR), which substitutes downstream constant region genes for the originally used Cμ constant region gene. Many investigators, ourselves included, have sought to understand how these processes specifically target the Igh locus and avoid other loci and potential deleterious consequences of malignant transformation. Our laboratory has concentrated on a complex regulatory region (RR) that is located downstream of Cα, the most 3′ of the Igh constant region genes. The ~40 kb 3′ RR, which is predicted to serve as a downstream major regulator of the Igh locus, contains two distinct segments: an ~28 kb region comprising four enhancers, and an adjacent ~12 kb region containing multiple CTCF and Pax5 binding sites. Analysis of targeted mutations in mice by a number of investigators has concluded that the entire 3′ RR enhancer region is essential for SHM and CSR (but not for VDJ joining) and for high levels of expression of multiple isotypes. The CTCF/Pax5 binding region is a candidate for influencing VDJ joining early in B cell development and serving as a potential insulator of the Igh locus. Components of the 3′ RR are subject to a variety of epigenetic changes during B cell development, i.e., DNAse I hypersensitivity, histone modifications, and DNA methylation, in association with transcription factor binding. I propose that these changes provide a foundation by which regulatory elements in modules of the 3′ RR function by interacting with each other and with target sequences of the Igh locus.
Collapse
Affiliation(s)
- Barbara K Birshtein
- Department of Cell Biology, Albert Einstein College of Medicine , Bronx, NY , USA
| |
Collapse
|
8
|
Peng C, Eckhardt LA. Role of the Igh intronic enhancer Eμ in clonal selection at the pre-B to immature B cell transition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:4399-411. [PMID: 24058175 PMCID: PMC3810302 DOI: 10.4049/jimmunol.1301858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously described a checkpoint for allelic exclusion that occurs at the pre-B cell to immature B cell transition and is dependent upon the IgH intronic enhancer, Eμ. We now provide evidence that the breach in allelic exclusion associated with Eμ deletion results from decreased Igμ levels that make it difficult for emerging BCRs to reach the signaling threshold required for positive selection into the immature B cell compartment. We show that this compartment is smaller in mice carrying an Eμ-deficient, but functional, IgH allele (VHΔ(a)). Pre-B cells in such mice produce ≈ 50% wild-type levels of Igμ (mRNA and protein), and this is associated with diminished signals, as measured by phosphorylation of pre-BCR/BCR downstream signaling proteins. Providing Eμ-deficient mice with a preassembled VL gene led not only to a larger immature B cell compartment but also to a decrease in "double-producers," suggesting that H chain/L chain combinations with superior signaling properties can overcome the signaling defect associated with low Igμ-chain and can eliminate the selective advantage of "double-producers" that achieve higher Igμ-chain levels through expression of a second IgH allele. Finally, we found that "double-producers" in Eμ-deficient mice include a subpopulation with autoreactive BCRs. We infer that BCRs with IgH chain from the Eμ-deficient allele are ignored during negative selection owing to their comparatively low density. In summary, these studies show that Eμ's effect on IgH levels at the pre-B cell to immature B cell transition strongly influences allelic exclusion, the breadth of the mature BCR repertoire, and the emergence of autoimmune B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Cell Differentiation
- Cells, Cultured
- Clonal Selection, Antigen-Mediated
- Enhancer Elements, Genetic
- Genes, Immunoglobulin Heavy Chain
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/immunology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Precursor Cells, B-Lymphoid/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Regulatory Sequences, Nucleic Acid
Collapse
Affiliation(s)
- Cheng Peng
- Department of Biological Sciences, Hunter College and The Graduate Center of The City University of New York, 695 Park Avenue, New York, NY, 10065
| | - Laurel A. Eckhardt
- Department of Biological Sciences, Hunter College and The Graduate Center of The City University of New York, 695 Park Avenue, New York, NY, 10065
| |
Collapse
|
9
|
Birshtein BK. The role of CTCF binding sites in the 3' immunoglobulin heavy chain regulatory region. Front Genet 2012; 3:251. [PMID: 23162572 PMCID: PMC3499808 DOI: 10.3389/fgene.2012.00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/26/2012] [Indexed: 01/24/2023] Open
Abstract
The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and modifications to achieve the construction and expression of individual antibody heavy chain genes in B cells. These events affect variable regions, through VDJ joining and subsequent somatic hypermutation, and constant regions through class switch recombination (CSR). Levels of IgH expression are also regulated during B cell development, resulting in high levels of secreted antibodies from fully differentiated plasma cells. Regulation of these events has been attributed primarily to two cis-elements that work from long distances on their target sequences, i.e., an ∼1 kb intronic enhancer, Eμ, located between the V region segments and the most 5′ constant region gene, Cμ; and an ∼40 kb 3′ regulatory region (3′ RR) that is located downstream of the most 3′ CH gene, Cα. The 3′ RR is a candidate for an “end” of B cell-specific regulation of the Igh locus. The 3′ RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1–4), which are essential for CSR and for high levels of IgH expression in plasma cells. Downstream of this enhancer-containing region is a region of high-density CTCF binding sites, which extends through hs5, 6, and 7 and further downstream. CTCF, with its enhancer-blocking activities, has been associated with all mammalian insulators and implicated in multiple chromosomal interactions. Here we address the 3′ RR CTCF-binding region as a potential insulator of the Igh locus, an independent regulatory element and a predicted modulator of the activity of 3′ RR enhancers. Using chromosome conformation capture technology, chromatin immunoprecipitation, and genetic approaches, we have found that the 3′ RR with its CTCF-binding region interacts with target sequences in the VH, Eμ, and CH regions through DNA looping as regulated by protein binding. This region impacts on B cell-specific Igh processes at different stages of B cell development.
Collapse
Affiliation(s)
- Barbara K Birshtein
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
10
|
Frezza D, Serone E, Lolli S, Cianci R, D'Addabbo P, Mattioli C, Giambra V, Pavlovic N, Djordjevic V, Kostic S, Pandolfi F, Kostic E. Balkan Endemic Nephropathy Risk Associates to the hs1.2 Ig Enhancer Polymorphism. EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Balkan Endemic Nephropathy (BEN) is a kidney degenerative disease with a high incidence in the valleys of the Danube and tributary rivers. Many studies describe it as a multifactorial disease. Environmental as well immuno-inflammatory and genetic cofactors have been suggested to trigger the onset of the disease. Recently, high levels of C-reactive protein were demonstrated in BEN patients. We performed this study to evaluate the possible correlation of BEN with the polymorphism of the Ig heavy chain 3'Regulatory Region enhancer hsl.2 that is related to changes of consensus for trans activators binding within the DNA sequence and probably consequently autoimmune and inflammatory diseases. Therefore, we studied three cohorts: 1) 111 control subjects, 2) 95 BEN patients in dialysis therapy and 3) 133 components of a large family “J” in the same geographical area. The allelic frequencies of hsl.2 of BEN patients and family “J” components had similar decrease frequency of allele *1 and increase of allele *2 in respect to the controls. This trend suggests the association of allele *1 as a protective and allele *2 as a risk component for the disease. The presence of a consensus sequence for NF-Kb in the allele *2 may link the polymorphism to the inflammatory activity of BEN. This study supports the presence of an inflammatory pathway in BEN through the involvement of polymorphic enhancer hsl.2 influencing differently binding complexes and consequently the 3D structure of 3' Regulatory Region of IgH. Our work is the first study that clearly links BEN to a gene involved in the regulation of immune response.
Collapse
Affiliation(s)
- D. Frezza
- Department of Biology “Enrico Calef”, University of Roma Tor Vergata, Rome, Italy
| | - E. Serone
- Department of Biology “Enrico Calef”, University of Roma Tor Vergata, Rome, Italy
| | - S. Lolli
- Institute of Internal Medicine, Catholic University of Sacred Heart, Rome, Italy
| | - R. Cianci
- Institute of Internal Medicine, Catholic University of Sacred Heart, Rome, Italy
| | - P. D'Addabbo
- Department of Biology, University of Bari, Bari, Italy
| | - C. Mattioli
- Department of Biology “Enrico Calef”, University of Roma Tor Vergata, Rome, Italy
| | - V. Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
| | - N. Pavlovic
- Clinic for Nephrology, Clinical Center Nis, University of Nis, Serbia
| | - V. Djordjevic
- Clinic for Nephrology, Clinical Center Nis, University of Nis, Serbia
| | - S. Kostic
- Clinic for Nephrology, Clinical Center Nis, University of Nis, Serbia
| | - F. Pandolfi
- Institute of Internal Medicine, Catholic University of Sacred Heart, Rome, Italy
| | - E. Kostic
- Clinic for Nephrology, Clinical Center Nis, University of Nis, Serbia
| |
Collapse
|
11
|
AIDing antibody diversity by error-prone mismatch repair. Semin Immunol 2012; 24:293-300. [PMID: 22703640 DOI: 10.1016/j.smim.2012.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022]
Abstract
The creation of a highly diverse antibody repertoire requires the synergistic activity of a DNA mutator, known as activation-induced deaminase (AID), coupled with an error-prone repair process that recognizes the DNA mismatch catalyzed by AID. Instead of facilitating the canonical error-free response, which generally occurs throughout the genome, DNA mismatch repair (MMR) participates in an error-prone repair mode that promotes A:T mutagenesis and double-strand breaks at the immunoglobulin (Ig) genes. As such, MMR is capable of compounding the mutation frequency of AID activity as well as broadening the spectrum of base mutations; thereby increasing the efficiency of antibody maturation. We here review the current understanding of this MMR-mediated process and describe how the MMR signaling cascade downstream of AID diverges in a locus dependent manner and even within the Ig locus itself to differentially promote somatic hypermutation (SHM) and class switch recombination (CSR) in B cells.
Collapse
|
12
|
Volpi SA, Verma-Gaur J, Hassan R, Ju Z, Roa S, Chatterjee S, Werling U, Hou H, Will B, Steidl U, Scharff M, Edelman W, Feeney AJ, Birshtein BK. Germline deletion of Igh 3' regulatory region elements hs 5, 6, 7 (hs5-7) affects B cell-specific regulation, rearrangement, and insulation of the Igh locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:2556-66. [PMID: 22345664 DOI: 10.4049/jimmunol.1102763] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Regulatory elements located within an ∼28-kb region 3' of the Igh gene cluster (3' regulatory region) are required for class switch recombination and for high levels of IgH expression in plasma cells. We previously defined novel DNase I hypersensitive sites (hs) 5, 6, 7 immediately downstream of this region. The hs 5-7 region (hs5-7) contains a high density of binding sites for CCCTC-binding factor (CTCF), a zinc finger protein associated with mammalian insulator activity, and is an anchor for interactions with CTCF sites flanking the D(H) region. To test the function of hs5-7, we generated mice with an 8-kb deletion encompassing all three hs elements. B cells from hs5-7 knockout (KO) (hs5-7KO) mice showed a modest increase in expression of the nearest downstream gene. In addition, Igh alleles in hs5-7KO mice were in a less contracted configuration compared with wild-type Igh alleles and showed a 2-fold increase in the usage of proximal V(H)7183 gene families. Hs5-7KO mice were essentially indistinguishable from wild-type mice in B cell development, allelic regulation, class switch recombination, and chromosomal looping. We conclude that hs5-7, a high-density CTCF-binding region at the 3' end of the Igh locus, impacts usage of V(H) regions as far as 500 kb away.
Collapse
Affiliation(s)
- Sabrina A Volpi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|