1
|
Pulmonary monocytes interact with effector T cells in the lung tissue to drive T RM differentiation following viral infection. Mucosal Immunol 2020; 13:161-171. [PMID: 31723250 PMCID: PMC6917844 DOI: 10.1038/s41385-019-0224-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Lung resident memory CD8 T cells (TRM) are critical for protection against respiratory viruses, but the cellular interactions required for their development are poorly understood. Herein we describe the necessity of classical monocytes for the establishment of lung TRM following influenza infection. We find that, during the initial appearance of lung TRM, monocytes and dendritic cells are the most numerous influenza antigen-bearing APCs in the lung. Surprisingly, depletion of DCs after initial T cell priming did not impact lung TRM development or maintenance. In contrast, a monocyte deficient pulmonary environment in CCR2-/- mice results in significantly less lung TRM following influenza infection, despite no defect in the antiviral effector response or in the peripheral memory pool. Imaging shows direct interaction of antigen-specific T cells with antigen-bearing monocytes in the lung, and pulmonary classical monocytes from the lungs of influenza infected mice are sufficient to drive differentiation of T cells in vitro. These data describe a novel role for pulmonary monocytes in mediating lung TRM development through direct interaction with T cells in the lung.
Collapse
|
2
|
Bouras M, Asehnoune K, Roquilly A. Contribution of Dendritic Cell Responses to Sepsis-Induced Immunosuppression and to Susceptibility to Secondary Pneumonia. Front Immunol 2018; 9:2590. [PMID: 30483258 PMCID: PMC6243084 DOI: 10.3389/fimmu.2018.02590] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are bone marrow derived cells which continuously seed in peripheral tissue. During infection, DCs play an essential interface between innate and adaptive immunity. Pneumonia is a lung inflammation triggered by pathogens and is characterized by excessive release of inflammatory cytokines that activate innate and acquired immunity. Pneumonia induces a rapid and protracted state of susceptibility to secondary infection, a state so-called sepsis-induced immunosuppression. In this review, we focus on the role of DCs in the development of this state of immunosuppression. Early during inflammation, activated DCs are characterized by decreased capacity of antigen (cross)- presentation of newly encountered antigens and decreased production of immunogenic cytokines, and sepsis-induced immunosuppression is mainly explained by a depletion of immature DCs which had all become mature. At a later stage, newly formed respiratory immature DCs are locally programmed by an immunological scare left-over by inflammation to induce tolerance. Tolerogenic Blimp1+ DCs produce suppressive cytokines such as tumor growth factor-B and participate to the maintenance of a local tolerogenic environment notably characterized by accumulation of Treg cells. In mice, the restoration of the immunogenic functions of DCs restores the mucosal immune response to pathogens. In humans, the modulation of inflammation by glucocorticoid during sepsis or trauma preserves DC immunogenic functions and is associated with resistance to secondary pneumonia. Finally, we propose that the alterations of DCs during and after inflammation can be used as biomarkers of susceptibility to secondary pneumonia and are promising therapeutic targets to enhance outcomes of patients with secondary pneumonia.
Collapse
Affiliation(s)
- Marwan Bouras
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| | - Karim Asehnoune
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| | - Antoine Roquilly
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| |
Collapse
|
3
|
Letendre C, Auger JP, Lemire P, Galbas T, Gottschalk M, Thibodeau J, Segura M. Streptococcus suis Serotype 2 Infection Impairs Interleukin-12 Production and the MHC-II-Restricted Antigen Presentation Capacity of Dendritic Cells. Front Immunol 2018; 9:1199. [PMID: 29899744 PMCID: PMC5988873 DOI: 10.3389/fimmu.2018.01199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Streptococcus suis is an important swine pathogen and emerging zoonotic agent. Encapsulated strains of S. suis modulate dendritic cell (DC) functions, leading to poorly activated CD4+ T cells. However, the antigen presentation ability of S. suis-stimulated DCs has not been investigated yet. In this work, we aimed to characterize the antigen presentation profiles of S. suis-stimulated DCs, both in vitro and in vivo. Upon direct activation in vitro, S. suis-stimulated murine bone marrow-derived DCs (bmDCs) preserved their antigen capture/processing capacities. However, they showed delayed kinetics of MHC-II expression compared to lipopolysaccharide-stimulated bmDCs. Meanwhile, splenic DCs from infected mice exhibited a compromised MHC-II expression, despite an appropriate expression of maturation markers. To identify potential interfering mechanisms, Class II Major Histocompatibility Complex Transactivator (CIITA) and membrane-associated RING-CH (MARCH)1/8 transcription were studied. S. suis-stimulated DCs maintained low levels of CIITA at early time points, both in vitro and in vivo, which could limit their ability to increase MHC-II synthesis. S. suis-stimulated DCs also displayed sustained/upregulated levels of MARCH1/8, thus possibly leading to MHC-II lysosomal degradation. The bacterial capsular polysaccharide played a partial role in this modulation. Finally, interleukin (IL)-12p70 production was inhibited in splenic DCs from infected mice, a profile compatible with DC indirect activation by pro-inflammatory compounds. Consequently, these cells induced lower levels of IL-2 and TNF-α in an antigen-specific CD4+ T cell presentation assay and blunted T cell CD25 expression. It remains unclear at this stage whether these phenotypical and transcriptional modulations observed in response to S. suis in in vivo infections are part of a bacterial immune evasion strategy or rather a feature common to systemic inflammatory response-inducing agents. However, it appears that the MHC-II-restricted antigen presentation and Th1-polarizing cytokine production capacities of DCs are impaired during S. suis infection. This study highlights the potential consequences of inflammation on the type and magnitude of the immune response elicited by a pathogen.
Collapse
Affiliation(s)
- Corinne Letendre
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Laboratory of Research on Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Paul Lemire
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Tristan Galbas
- Laboratory of Molecular Immunology, Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Marcelo Gottschalk
- Laboratory of Research on Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jacques Thibodeau
- Laboratory of Molecular Immunology, Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Ghinnagow R, De Meester J, Cruz LJ, Aspord C, Corgnac S, Macho-Fernandez E, Soulard D, Fontaine J, Chaperot L, Charles J, Soncin F, Mami-Chouaib F, Plumas J, Faveeuw C, Trottein F. Co-delivery of the NKT agonist α-galactosylceramide and tumor antigens to cross-priming dendritic cells breaks tolerance to self-antigens and promotes antitumor responses. Oncoimmunology 2017; 6:e1339855. [PMID: 28932640 DOI: 10.1080/2162402x.2017.1339855] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022] Open
Abstract
Vaccines designed to abrogate the tolerance of tumor self-antigens and amplify cytotoxic CD8+ T cells (CTLs) have promise for the treatment of cancer. Type I natural killer (NKT) cells have attracted considerable interest in the cancer therapy field. In the current study, we have exploited the unique ability of NKT cells to serve as T-helper cells to license dendritic cells (DCs) for cross priming with the aim to generate efficient CTL antitumor responses. To this end, we designed a nanoparticle-based vaccine to target cross-priming DCs via the Clec9a endocytic pathway. Our results showed for the first time that simultaneous co-delivery of the NKT agonist α-galactosylceramide and tumor self-antigens (Trp2 and gp100) to CD8α+ DCs promotes strong antitumor responses in prophylactic and therapeutic settings (advanced solid tumor model in the mouse). We attributed the vaccine's therapeutic effects to NKT cells (but not to T-helper lymphocytes) and CD8+ T cells. Efficacy was correlated with an elevated ratio between tumor antigen-specific CD8+ T cells and regulatory CD4+ T lymphocytes within the tumor. The nanoparticle-based vaccine actively targeted human CLEC9A-expressing BDCA3+ DCs - the equivalent of murine cross-priming CD8α+ DCs - and induced a strong expansion of effector memory tumor self-antigen (Melan -A)-specific CD8+ T cells from peripheral blood mononuclear cells sourced from healthy donors and melanoma patients. Together, our result shed light on novel therapeutic approaches for controlling tumor development.
Collapse
Affiliation(s)
- Reem Ghinnagow
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, F-59000 Lille, France.,Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Julie De Meester
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, F-59000 Lille, France.,Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Luis Javier Cruz
- Translational Nanobiomaterials and Imaging, Department of radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Caroline Aspord
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Fac. de médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Macho-Fernandez
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, F-59000 Lille, France.,Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Daphnée Soulard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, F-59000 Lille, France.,Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Josette Fontaine
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, F-59000 Lille, France.,Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Julie Charles
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France.,Dermatology department, Grenoble Alpes University Hospital, F-38700 Grenoble, France
| | - Fabrice Soncin
- Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8161, F-59000 Lille, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Fac. de médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Joel Plumas
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, F-59000 Lille, France.,Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, F-59000 Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, F-59000 Lille, France.,Centre Hospitalier Universitaire de Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Abstract
Cancer diagnosis and therapy is steadily improving. Still, diagnosis is frequently late and diagnosis and follow-up procedures mostly are time-consuming and expensive. Searching for tumor-derived exosomes (TEX) in body fluids may provide an alternative, minimally invasive, yet highly reliable diagnostic tool. Beyond this, there is strong evidence that TEX could become a potent therapeutics. Exosomes, small vesicles delivered by many cells of the organism, are found in all body fluids. Exosomes are characterized by lipid composition, common and donor cell specific proteins, mRNA, small non-coding RNA including miRNA and DNA. Particularly the protein and miRNA markers received much attention as they may allow for highly specific diagnosis and can provide hints toward tumor aggressiveness and progression, where exosome-based diagnosis and follow-up is greatly facilitated by the recovery of exosomes in body fluids, particularly the peripheral blood. Beyond this, exosomes are the most important intercellular communicators that modulate, instruct, and reprogram their surrounding as well as distant organs. In concern about TEX this includes message transfer from tumor cells toward the tumor stroma, the premetastatic niche, the hematopoietic system and, last but not least, the instruction of non-cancer stem cells by cancer-initiating cells (CIC). Taking this into account, it becomes obvious that "tailored" exosomes offer themselves as potent therapeutic delivery system. In brief, during the last 4-5 years there is an ever-increasing, overwhelming interest in exosome research. This boom appears fully justified provided the content of the exosomes becomes most thoroughly analyzed and their mode of intercellular interaction can be unraveled in detail as this knowledge will open new doors toward cancer diagnosis and therapy including immunotherapy and CIC reprogramming.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Fan HY, Qi D, Yu C, Zhao F, Liu T, Zhang ZK, Yang MY, Zhang LM, Chen DQ, Du Y. Paeonol protects endotoxin-induced acute kidney injury: potential mechanism of inhibiting TLR4-NF-κB signal pathway. Oncotarget 2016; 7:39497-39510. [PMID: 27027358 PMCID: PMC5129948 DOI: 10.18632/oncotarget.8347] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/23/2016] [Indexed: 12/21/2022] Open
Abstract
STUDY DESIGN AND METHODS In order to determine the therapeutic effect and mechanism of paeonol on acute kidney injury induced by endotoxin, an acute kidney injury model was established by intraperitoneal administration of lipopolysaccharide in mice in vivo and on LPS-induced dendritic cells in vitro. Renal tissues were used for histologic examination. Concentrations of blood urea nitrogen and serum creatinine were detected, inflammatory cytokines were determined by ELISA. The relative proteins' expression of TLR4-NF-κB signal pathway was assessed by Western blot, the localization and expression of phospho-NF-κB p65 in kidney was monitored by immunohistochemistry. RESULTS Treatment of paeonol successfully cuts histopathological scores and dilutes the concentrations of blood urea nitrogen and serum creatinine as index of renal injury severity. In addition, paeonol reduces pro-inflammatory cytokines and increases anti-inflammatory cytokines stimulated by LPS in a dose-dependent manner. Paeonol also inhibits the expression of phosphorylated NF-κB p65, IκBα and IKKβ, and restrains NF-κB p65 DNA-binding activity. Paeonol treatment also attenuates the effects of LPS on dendritic cells, with significant inhibition of pro-inflammatory cytokines release, then TLR4 expression and NF-κB signal pathway have been suppressed. CONCLUSIONS These results indicated that paeonol has protective effects on endotoxin-induced kidney injury. The mechanisms underlying such effects are associated with its successfully attenuate inflammatory and suppresses TLR4 and NF-κB signal pathway. Therefore, paeonol has great potential to be a novel and natural product agent for treating AKI or septic-AKI.
Collapse
Affiliation(s)
- Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Dong Qi
- Department of Nephrology, Yu-Huang-Ding Hospital/Qingdao University, Yantai, P.R. China
| | - Chen Yu
- School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Tao Liu
- Center for Reproductive Medicine, Tai'an Central Hospital, Tai'an, P.R. China
| | - Zuo-Kai Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Lei-Ming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Da-Quan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Yuan Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| |
Collapse
|
7
|
Greyer M, Whitney P, Stock A, Davey G, Tebartz C, Bachem A, Mintern J, Strugnell R, Turner S, Gebhardt T, O’Keeffe M, Heath W, Bedoui S. T Cell Help Amplifies Innate Signals in CD8 + DCs for Optimal CD8 + T Cell Priming. Cell Rep 2016; 14:586-597. [DOI: 10.1016/j.celrep.2015.12.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/02/2015] [Accepted: 12/10/2015] [Indexed: 12/29/2022] Open
|
8
|
Riquelme SA, Bueno SM, Kalergis AM. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility. Immunology 2015; 144:321-32. [PMID: 25179131 DOI: 10.1111/imm.12375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 01/28/2023] Open
Abstract
Carbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| | | | | |
Collapse
|
9
|
Vega-Ramos J, Roquilly A, Zhan Y, Young LJ, Mintern JD, Villadangos JA. Inflammation Conditions Mature Dendritic Cells To Retain the Capacity To Present New Antigens but with Altered Cytokine Secretion Function. THE JOURNAL OF IMMUNOLOGY 2014; 193:3851-9. [DOI: 10.4049/jimmunol.1303215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Vega-Ramos J, Roquilly A, Asehnoune K, Villadangos JA. Modulation of dendritic cell antigen presentation by pathogens, tissue damage and secondary inflammatory signals. Curr Opin Pharmacol 2014; 17:64-70. [PMID: 25128781 DOI: 10.1016/j.coph.2014.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/29/2022]
Abstract
Antigen presentation by dendritic cells (DC) is regulated directly by pathogen-associated or cell death-associated cues, or indirectly by immunomodulatory molecules produced during infection or tissue damage. DC modulation by direct encounter of pathogen-associated compounds has been thoroughly studied; the effects of molecules associated with cell death are less well characterized; modulation by secondary signals remain poorly understood. In this review we describe recent studies on the role of these three categories of immunomodulatory compounds on DC. We conclude that characterization of the role of secondary immunomodulators is an area in dare need of further study. The outcomes of this endeavor will be new opportunities for the development of better vaccines and compounds applicable to the therapeutic immunomodulation of DC function.
Collapse
Affiliation(s)
- Javier Vega-Ramos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Pakville, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Pakville, Australia; Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculte de Médecine, Université de Nantes, France; Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculte de Médecine, Université de Nantes, France; Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Pakville, Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
11
|
Gu X, Erb U, Büchler MW, Zöller M. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int J Cancer 2014; 136:E74-84. [PMID: 25066479 DOI: 10.1002/ijc.29100] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/16/2022]
Abstract
Leukemia immunotherapy frequently does not meet expectation, one of the handicaps being tumor exosome (TEX)-promoted immunosuppression. We here asked, using the mouse myeloid leukemia WEHI3B and the renal cell carcinoma line RENCA, whether dendritic cell (DC) vaccination suffices to counterregulate TEX-induced immunosuppression and whether TEX could serve as tumor antigen for DC-loading. DC-vaccination significantly prolonged the survival time of WEHI3B-bearing mice, TEX-loaded DC (DC-TEX) being superior to lysate-loaded DC (DC-lys), even an excess of TEX not interfering with immune response induction. The superior response to DC-TEX was accompanied by an increase in WEHI3B-specific CD4+ T cells, evaluated by trogocytosis and proliferation. Similar findings accounted for DC loaded with RENCA TEX. TEX was efficiently taken-up by DC and TEX uptake supported CD11c, MHCII and IL12 upregulation in DC. Importantly, TEX was partly recruited into the MHCII-loading compartment such that "TEX" presentation time and recovery in T cells significantly exceeded that of tumor-lysate. Thus, TEX did not drive DC into a suppressive phenotype and were a superior antigen due to higher efficacy of TEX-presentation that is supported by prolonged persistence, preferential processing in the MHCII-loading compartment and pronounced trogocytosis by T helper cells. TEX is present in tumor patients' sera. TEX, recovered and enriched from patients' sera, might well provide an optimized, individual-specific antigen source for DC-loading and vaccination.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | | | | | |
Collapse
|