1
|
Cañas JC, Aguilera A, Gómez-González B. Detection of R-Loops by In Vivo and In Vitro Cytosine Deamination in Saccharomyces cerevisiae. Methods Mol Biol 2022; 2528:39-53. [PMID: 35704184 DOI: 10.1007/978-1-0716-2477-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
R-loops are transcriptional by-products formed by a hybrid of the nascent RNA molecule with its DNA template and the displaced nontemplate DNA strand. The single stranded nature of the displaced nontemplate strand makes it vulnerable to attack. This property is used in nature to cause directed mutagenesis and breaks by the action of the activation-induced cytosine deaminase (AID) enzyme and can thus be exploited to detect the presence of R-loops even when they form at low frequencies by overexpressing this enzyme in vivo or by in vitro treatment with the bisulfite anion, which further allows nucleotide resolution. This is of particular relevance given the fact that R-loops have the potential to hamper DNA replication and repair, threatening genome integrity. Here, we describe the protocols used in the yeast Saccharomyces cerevisiae to infer the presence of R-loops through increased AID-induced DNA damage, measured as increased recombination or Rad52 foci formation as well as to detect single R-loop molecules and determine their length at particular genomic sites via bisulfite treatment and amplification.
Collapse
Affiliation(s)
- Juan C Cañas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
2
|
Abstract
Physiological and pathological roles for R-loop structures continue to be discovered, and studies suggest that R-loops could contribute to human disease. R-loops are nucleic acid structures characterized by a DNA:RNA hybrid and displaced single-stranded DNA that occur in connection with transcription. R-loops form naturally and have been shown to be important for a number of physiological processes such as mitochondrial replication initiation, class switch recombination, DNA repair, modulating DNA topology, and regulation of gene expression. However, subsets of R-loops or persistent R-loops lead to DNA breaks, chromosome rearrangement, and genome instability. In addition, R-loops have been linked to human diseases, specifically neurological disorders and cancer. Of the large amount of research produced recently on R-loops, this review covers evidence for R-loop involvement in normal cellular physiology and pathophysiology, as well as describing factors that contribute to R-loop regulation.
Collapse
Affiliation(s)
- Ryan Patrick Mackay
- Department of Molecular and Cellular Physiology and Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Qinqin Xu
- Department of Otolaryngology - Head & Neck Surgery, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Paul M Weinberger
- Department of Molecular and Cellular Physiology and Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA.,Department of Otolaryngology - Head & Neck Surgery, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
3
|
Chedin F, Benham CJ. Emerging roles for R-loop structures in the management of topological stress. J Biol Chem 2020; 295:4684-4695. [PMID: 32107311 DOI: 10.1074/jbc.rev119.006364] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
R-loop structures are a prevalent class of alternative non-B DNA structures that form during transcription upon invasion of the DNA template by the nascent RNA. R-loops form universally in the genomes of organisms ranging from bacteriophages, bacteria, and yeasts to plants and animals, including mammals. A growing body of work has linked these structures to both physiological and pathological processes, in particular to genome instability. The rising interest in R-loops is placing new emphasis on understanding the fundamental physicochemical forces driving their formation and stability. Pioneering work in Escherichia coli revealed that DNA topology, in particular negative DNA superhelicity, plays a key role in driving R-loops. A clear role for DNA sequence was later uncovered. Here, we review and synthesize available evidence on the roles of DNA sequence and DNA topology in controlling R-loop formation and stability. Factoring in recent developments in R-loop modeling and single-molecule profiling, we propose a coherent model accounting for the interplay between DNA sequence and DNA topology in driving R-loop structure formation. This model reveals R-loops in a new light as powerful and reversible topological stress relievers, an insight that significantly expands the repertoire of R-loops' potential biological roles under both normal and aberrant conditions.
Collapse
Affiliation(s)
- Frederic Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 .,Genome Center, University of California, Davis, California 95616
| | - Craig J Benham
- Genome Center, University of California, Davis, California 95616 .,Departments of Mathematics and Biomedical Engineering, University of California, Davis, California 95616
| |
Collapse
|
4
|
Ultra-deep Coverage Single-molecule R-loop Footprinting Reveals Principles of R-loop Formation. J Mol Biol 2020; 432:2271-2288. [PMID: 32105733 DOI: 10.1016/j.jmb.2020.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
R-loops are a prevalent class of non-B DNA structures that have been associated with both positive and negative cellular outcomes. DNA:RNA immunoprecipitation (DRIP) approaches based on the anti-DNA:RNA hybrid S9.6 antibody revealed that R-loops form dynamically over conserved genic hotspots. We have developed an orthogonal approach that queries R-loops via the presence of long stretches of single-stranded DNA on their looped-out strand. Nondenaturing sodium bisulfite treatment catalyzes the conversion of unpaired cytosines to uracils, creating permanent genetic tags for the position of an R-loop. Long-read, single-molecule PacBio sequencing allows the identification of R-loop 'footprints' at near nucleotide resolution in a strand-specific manner on long single DNA molecules and at ultra-deep coverage. Single-molecule R-loop footprinting coupled with PacBio sequencing (SMRF-seq) revealed a strong agreement between S9.6-based and bisulfite-based R-loop mapping and confirmed that R-loops form over genic hotspots, including gene bodies and terminal gene regions. Based on the largest single-molecule R-loop dataset to date, we show that individual R-loops form nonrandomly, defining discrete sets of overlapping molecular clusters that pileup through larger R-loop zones. R-loops most often map to intronic regions and their individual start and stop positions do not match with intron-exon boundaries, reinforcing the model that they form cotranscriptionally from unspliced transcripts. SMRF-seq further established that R-loop distribution patterns are not simply driven by intrinsic DNA sequence features but most likely also reflect DNA topological constraints. Overall, DRIP-based and SMRF-based approaches independently provide a complementary and congruent view of R-loop distribution, consolidating our understanding of the principles underlying R-loop formation.
Collapse
|
5
|
Ribeiro de Almeida C, Dhir S, Dhir A, Moghaddam AE, Sattentau Q, Meinhart A, Proudfoot NJ. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol Cell 2018; 70:650-662.e8. [PMID: 29731414 PMCID: PMC5971202 DOI: 10.1016/j.molcel.2018.04.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Class switch recombination (CSR) at the immunoglobulin heavy-chain (IgH) locus is associated with the formation of R-loop structures over switch (S) regions. While these often occur co-transcriptionally between nascent RNA and template DNA, we now show that they also form as part of a post-transcriptional mechanism targeting AID to IgH S-regions. This depends on the RNA helicase DDX1 that is also required for CSR in vivo. DDX1 binds to G-quadruplex (G4) structures present in intronic switch transcripts and converts them into S-region R-loops. This in turn targets the cytidine deaminase enzyme AID to S-regions so promoting CSR. Notably R-loop levels over S-regions are diminished by chemical stabilization of G4 RNA or by the expression of a DDX1 ATPase-deficient mutant that acts as a dominant-negative protein to reduce CSR efficiency. In effect, we provide evidence for how S-region transcripts interconvert between G4 and R-loop structures to promote CSR in the IgH locus.
Collapse
Affiliation(s)
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Quentin Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK.
| |
Collapse
|
6
|
Nascent Connections: R-Loops and Chromatin Patterning. Trends Genet 2016; 32:828-838. [PMID: 27793359 DOI: 10.1016/j.tig.2016.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022]
Abstract
RNA molecules, such as long noncoding RNAs (lncRNAs), have critical roles in regulating gene expression, chromosome architecture, and the modification states of chromatin. Recent developments suggest that RNA also influences gene expression and chromatin patterns through the interaction of nascent transcripts with their DNA template via the formation of co-transcriptional R-loop structures. R-loop formation over specific, conserved, hotspots occurs at thousands of genes in mammalian genomes and represents an important and dynamic feature of mammalian chromatin. Here, focusing primarily on mammalian systems, I describe the accumulating connections and possible mechanisms linking R-loop formation and chromatin patterning. The possible contribution of aberrant R-loops to pathological conditions is also discussed.
Collapse
|
7
|
Saintamand A, Vincent-Fabert C, Garot A, Rouaud P, Oruc Z, Magnone V, Cogné M, Denizot Y. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region. Nat Commun 2016; 7:10730. [PMID: 26883548 PMCID: PMC4757795 DOI: 10.1038/ncomms10730] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/15/2016] [Indexed: 01/16/2023] Open
Abstract
The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a ‘palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance. The IgH 3' regulatory region contains an evolutionarily conserved palindromic sequence flanking important enhancer elements. Here the authors show that the palindrome is required for generating antibody diversity.
Collapse
Affiliation(s)
| | | | - Armand Garot
- Université de Limoges, CRIBL, UMR CNRS 7276, Limoges 87025, France
| | - Pauline Rouaud
- Université de Limoges, CRIBL, UMR CNRS 7276, Limoges 87025, France
| | - Zeliha Oruc
- Université de Limoges, CRIBL, UMR CNRS 7276, Limoges 87025, France
| | - Virginie Magnone
- CNRS et Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 6097, Sophia Antipolis 06560, France
| | - Michel Cogné
- Université de Limoges, CRIBL, UMR CNRS 7276, Limoges 87025, France.,Institut Universitaire de France, Paris 75231, France
| | - Yves Denizot
- Université de Limoges, CRIBL, UMR CNRS 7276, Limoges 87025, France
| |
Collapse
|
8
|
Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16:583-97. [PMID: 26370899 DOI: 10.1038/nrg3961] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|
9
|
Zheng S, Vuong BQ, Vaidyanathan B, Lin JY, Huang FT, Chaudhuri J. Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA. Cell 2015; 161:762-73. [PMID: 25957684 PMCID: PMC4426339 DOI: 10.1016/j.cell.2015.03.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/31/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022]
Abstract
Transcription through immunoglobulin switch (S) regions is essential for class switch recombination (CSR), but no molecular function of the transcripts has been described. Likewise, recruitment of activation-induced cytidine deaminase (AID) to S regions is critical for CSR; however, the underlying mechanism has not been fully elucidated. Here, we demonstrate that intronic switch RNA acts in trans to target AID to S region DNA. AID binds directly to switch RNA through G-quadruplexes formed by the RNA molecules. Disruption of this interaction by mutation of a key residue in the putative RNA-binding domain of AID impairs recruitment of AID to S region DNA, thereby abolishing CSR. Additionally, inhibition of RNA lariat processing leads to loss of AID localization to S regions and compromises CSR; both defects can be rescued by exogenous expression of switch transcripts in a sequence-specific manner. These studies uncover an RNA-mediated mechanism of targeting AID to DNA.
Collapse
Affiliation(s)
- Simin Zheng
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Bao Q Vuong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biology, City College of New York, New York, NY 10031, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Jia-Yu Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
10
|
Zhang ZZ, Pannunzio NR, Hsieh CL, Yu K, Lieber MR. Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids. BMC Res Notes 2015; 8:127. [PMID: 25890199 PMCID: PMC4393563 DOI: 10.1186/s13104-015-1092-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
Background Long genomic R-loops in eukaryotes were first described at the immunoglobulin heavy chain locus switch regions using bisulfite sequencing and functional studies. A mouse monoclonal antibody called S9.6 has been used for immunoprecipitation (IP) to identify R-loops, based on the assumption that it is specific for RNA:DNA over other nucleic acid duplexes. However, recent work has demonstrated that a variable domain of S9.6 binds AU-rich RNA:RNA duplexes with a KD that is only 5.6-fold weaker than for RNA:DNA duplexes. Most IP protocols do not pre-clear the genomic nucleic acid with RNase A to remove free RNA. Fold back of ssRNA can readily generate RNA:RNA duplexes that may bind the S9.6 antibody, and adventitious binding of RNA may also create short RNA:DNA regions. Here we investigate whether RNase A is needed to obtain reliable IP with S9.6. Findings As our test locus, we chose the most well-documented site for kilobase-long mammalian genomic R-loops, the immunoglobulin heavy chain locus (IgH) class switch regions. The R-loops at this locus can be induced by using cytokines to stimulate transcription from germline transcript promoters. We tested IP using S9.6 with and without various RNase treatments. The RNase treatments included RNase H to destroy the RNA in an RNA:DNA duplex and RNase A to destroy single-stranded (ss) RNA to prevent it from binding S9.6 directly (as duplex RNA) and to prevent the ssRNA from annealing to the genome, resulting in adventitious RNA:DNA hybrids. We find that optimal detection of RNA:DNA duplexes requires removal of ssRNA using RNase A. Without RNase A treatment, known regions of R-loop formation containing RNA:DNA duplexes can not be reliably detected. With RNase A treatment, a signal can be detected over background, but only within a limited 2 or 3-fold range, even with a stable kilobase-long genomic R-loop. Conclusion Any use of the S9.6 antibody must be preceded by RNase A treatment to remove free ssRNA that may compete for the S9.6 binding by forming RNA:RNA regions or short, transient RNA:DNA duplexes. Caution should be used when interpreting S9.6 data, and confirmation by independent structural and functional methods is essential. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1092-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Z Zhang
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA. .,Departments of Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA.
| | - Nicholas R Pannunzio
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA. .,Departments of Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA.
| | - Chih-Lin Hsieh
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA. .,Departments of Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA.
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, 5175 Biomedical Physical Sciences, East Lansing, MI, 48824, USA.
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Ctr. Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA. .,Departments of Pathology, Biochemistry & Molecular Biology; Molecular Microbiology & Immunology; Urology, University of Southern California Keck School of Medicine, 1441 Eastlake Ave., Rm. 5428, Los Angeles, CA, 90089-9176, USA.
| |
Collapse
|
11
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|