1
|
Isakova-Sivak I, Matyushenko V, Stepanova E, Matushkina A, Kotomina T, Mezhenskaya D, Prokopenko P, Kudryavtsev I, Kopeykin P, Sivak K, Rudenko L. Recombinant Live Attenuated Influenza Vaccine Viruses Carrying Conserved T-cell Epitopes of Human Adenoviruses Induce Functional Cytotoxic T-Cell Responses and Protect Mice against Both Infections. Vaccines (Basel) 2020; 8:E196. [PMID: 32344618 PMCID: PMC7349758 DOI: 10.3390/vaccines8020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Human adenoviruses (AdVs) are one of the most common causes of acute respiratory viral infections worldwide. Multiple AdV serotypes with low cross-reactivity circulate in the human population, making the development of an effective vaccine very challenging. In the current study, we designed a cross-reactive AdV vaccine based on the T-cell epitopes conserved among various AdV serotypes, which were inserted into the genome of a licensed cold-adapted live attenuated influenza vaccine (LAIV) backbone. We rescued two recombinant LAIV-AdV vaccines by inserting the selected AdV T-cell epitopes into the open reading frame of full-length NA and truncated the NS1 proteins of the H7N9 LAIV virus. We then tested the bivalent vaccines for their efficacy against influenza and human AdV5 in a mouse model. The vaccine viruses were attenuated in C57BL/6J mice and induced a strong influenza-specific antibody and cell-mediated immunity, fully protecting the mice against virulent influenza virus infection. The CD8 T-cell responses induced by both LAIV-AdV candidates were functional and efficiently killed the target cells loaded either with influenza NP366 or AdV DBP418 peptides. In addition, high levels of recall memory T cells targeted to an immunodominant H2b-restricted CD8 T-cell epitope were detected in the immunized mice after the AdV5 challenge, and the magnitude of these responses correlated with the level of protection against pulmonary pathology caused by the AdV5 infection. Our findings suggest that the developed recombinant vaccines can be used for combined protection against influenza and human adenoviruses and warrant further evaluation on humanized animal models and subsequent human trials.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Ekaterina Stepanova
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Anastasia Matushkina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Pavel Kopeykin
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| |
Collapse
|
2
|
Florescu DF, Schaenman JM. Adenovirus in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13527. [PMID: 30859626 DOI: 10.1111/ctr.13527] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
Abstract
These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation review the diagnosis, prevention, and management of adenovirus infections after solid organ transplantation. Adenovirus is an important cause of infectious complications in both stem cell transplant and SOT patients, causing a range of clinical syndromes including pneumonitis, colitis, and disseminated disease. The current update of the guidelines highlights that adenovirus surveillance testing should not be performed in asymptomatic recipients. Serial quantitative PCR might play a role in the decision to initiate or assess response to therapy in a symptomatic patient. The initial and most important components of therapy remain supportive care and decrease in immunosuppression. The use of antiviral therapy is not supported by prospective randomized clinical trials. However, intravenous cidofovir is considered the standard practice for treatment of severe, progressive, or disseminated adenovirus disease in most transplant centers. Intravenous immunoglobulin may be beneficial, primarily in a select group of patients with hypogammaglobulinemia. Future approaches to treatment of adenovirus disease may include administration of adenovirus-specific T-cell therapy.
Collapse
Affiliation(s)
- Diana F Florescu
- Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joanna M Schaenman
- Division of Infectious Diseases, David Geffen School of Medicine, Los Angeles, California
| | | |
Collapse
|
3
|
Human leukemia antigen-A*0201-restricted epitopes of human endogenous retrovirus W family envelope (HERV-W env) induce strong cytotoxic T lymphocyte responses. Virol Sin 2017; 32:280-289. [PMID: 28840564 DOI: 10.1007/s12250-017-3984-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
Human endogenous retrovirus W family (HERV-W) envelope (env) has been reported to be related to several human diseases, including autoimmune disorders, and it could activate innate immunity. However, there are no reports investigating whether human leukemia antigen (HLA)-A*0201+ restriction is involved in the immune response caused by HERV-W env in neuropsychiatric diseases. In the present study, HERV-W env-derived epitopes presented by HLA-A*0201 are described with the potential for use in adoptive immunotherapy. Five peptides displaying HLA-A*0201-binding motifs were predicted using SYFEPITHI and BIMAS, and synthesized. A CCK-8 assay showed peptides W, Q and T promoted lymphocyte proliferation. Stimulation of peripheral blood mononuclear cells from HLA-A*0201+ donors with each of these peptides induced peptide-specific CD8+ T cells. High numbers of IFN-γ-secreting T cells were also detectable after several weekly stimulations with W, Q and T. Besides lysis of HERV-W env-loaded target cells, specific apoptosis was also observed. These data demonstrate that human T cells can be sensitized toward HERV-W env peptides (W, Q and T) and, moreover, pose a high killing potential toward HERV-W env-expressing U251 cells. In conclusion, peptides W Q and T, which are HERV-W env antigenic epitopes, have both antigenicity and immunogenicity, and can cause strong T cell immune responses. Our data strengthen the view that HERV-W env should be considered as an autoantigen that can induce autoimmunity in neuropsychiatric diseases, such as multiple sclerosis and schizophrenia. These data might provide an experimental foundation for a HERV-W env peptide vaccine and new insight into the treatment of neuropsychiatric diseases.
Collapse
|
4
|
Sester M, Leboeuf C, Schmidt T, Hirsch HH. The "ABC" of Virus-Specific T Cell Immunity in Solid Organ Transplantation. Am J Transplant 2016; 16:1697-706. [PMID: 26699950 DOI: 10.1111/ajt.13684] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 01/25/2023]
Abstract
Transplant patients are at increased risk of viral complications due to impaired control of viral replication, resulting from HLA mismatching between graft and host and the immunosuppression needed to avert alloimmune reactions. In the past decade, quantitative viral load measurements have become widely available to identify patients at risk and to inform treatment decisions with respect to immunosuppressive drugs and antiviral therapies. Because viral loads are viewed as the result of viral replication and virus-specific immune control, virus-specific T cell monitoring has been explored to optimize management of adenovirus, BK polyomavirus and cytomegalovirus ("ABC") in transplant patients. Although most studies are descriptive using different technologies, the overall results show that the quantity and quality of virus-specific T cells inversely correlate with viral replication, whereby strong cellular immune responses are associated with containment of viral replication. The key obstacles to the introduction of assays for virus-specific T cells into clinical practice is the definition of reliable cutoffs for clinical decision making, the poor negative predictive value of some assays, and the absence of interventional trials justifying changes of antiviral treatment or immunosuppression. More clinical research is needed using optimized assays and targets before standardization and commutability can be envisaged as achieved for viral load testing.
Collapse
Affiliation(s)
- M Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - C Leboeuf
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Basel, Switzerland
| | - T Schmidt
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - H H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Basel, Switzerland.,Division Infection Diagnostics, Department Biomedicine (Haus Petersplatz), University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Tang B, Zhou W, Du J, He Y, Li Y. Identification of human leukemia antigen A*0201-restricted epitopes derived from epidermal growth factor pathway substrate number 8. Mol Med Rep 2015; 12:1741-52. [PMID: 25936538 PMCID: PMC4463842 DOI: 10.3892/mmr.2015.3673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
T-cell-mediated immunotherapy of hematological malignancies requires selection of targeted tumor-associated antigens and T-cell epitopes contained in these tumor proteins. Epidermal growth factor receptor pathway substrate 8 (EPS8), whose function is pivotal for tumor proliferation, progression and metastasis, has been found to be overexpressed in most human tumor types, while its expression in normal tissue is low. The aim of the present study was to identify human leukemia antigen (HLA)-A*0201-restricted epitopes of EPS8 by using a reverse immunology approach. To achieve this, computer algorithms were used to predict HLA-A*0201 molecular binding, proteasome cleavage patterns as well as translocation of transporters associated with antigen processing. Candidate peptides were experimentally validated by T2 binding affinity assay and brefeldin-A decay assay. The functional avidity of peptide-specific cytotoxic T lymphocytes (CTLs) induced from peripheral blood mononuclear cells of healthy volunteers were evaluated by using an enzyme-linked immunosorbent spot assay and a cytotoxicity assay. Four peptides, designated as P455, P92, P276 and P360, had high affinity and stability of binding towards the HLA-A*0201 molecule, and specific CTLs induced by them significantly responded to the corresponding peptides and secreted IFN-γ. At the same time, the CTLs were able to specifically lyse EPS8-expressing cell lines in an HLA-A*0201-restricted manner. The present study demon-strated that P455, P92, P276 and P360 were CTL epitopes of EPS8, and were able to be used for epitope-defined adoptive T-cell transfer and multi-epitope-based vaccine design.
Collapse
Affiliation(s)
- Baishan Tang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jingwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
6
|
Abstract
Human adenoviruses (HAdVs) are an important cause of infections in both immunocompetent and immunocompromised individuals, and they continue to provide clinical challenges pertaining to diagnostics and treatment. The growing number of HAdV types identified by genomic analysis, as well as the improved understanding of the sites of viral persistence and reactivation, requires continuous adaptions of diagnostic approaches to facilitate timely detection and monitoring of HAdV infections. In view of the clinical relevance of life-threatening HAdV diseases in the immunocompromised setting, there is an urgent need for highly effective treatment modalities lacking major side effects. The present review summarizes the recent progress in the understanding and management of HAdV infections.
Collapse
|