1
|
Nicholas CA, Tensun FA, Evans SA, Toole KP, Broncucia H, Hesselberth JR, Gottlieb PA, Wells KL, Smith MJ. Islet-antigen reactive B cells display a unique phenotype and BCR repertoire in autoantibody positive and recent-onset type 1 diabetes patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599914. [PMID: 38979376 PMCID: PMC11230262 DOI: 10.1101/2024.06.20.599914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). To better understand their contribution, we performed single cell gene and BCR-seq analysis on pancreatic islet antigen-reactive (IAR) B cells from the peripheral blood of nondiabetic (ND), autoantibody positive prediabetic (AAB), and recent-onset T1D individuals. We found that the frequency of IAR B cells was increased in AAB and T1D. IAR B cells from these donors had altered expression of B cell signaling, pro-inflammatory, infection, and antigen processing and presentation genes. Both AAB and T1D donors demonstrated a significant increase in certain heavy and light chain V genes, and these V genes were enriched in islet-reactivity. Public clones of IAR B cells were restricted almost entirely to AAB and T1D donors. IAR B cells were clonally expanded in the autoimmune donors, particularly the AAB group. Notably, a substantial fraction of IAR B cells in AAB and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell activation during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
Collapse
Affiliation(s)
- Catherine A. Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Fatima A. Tensun
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Spencer A. Evans
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin P. Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A. Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Lomakin YA, Ovchinnikova LA, Zakharova MN, Ivanova MV, Simaniv TO, Kabilov MR, Bykova NA, Mukhina VS, Kaminskaya AN, Tupikin AE, Zakharova MY, Favorov AV, Illarioshkin SN, Belogurov AA, Gabibov AG. Multiple Sclerosis Is Associated with Immunoglobulin Germline Gene Variation of Transitional B Cells. Acta Naturae 2022; 14:84-93. [PMID: 36694905 PMCID: PMC9844083 DOI: 10.32607/actanaturae.11794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 01/22/2023] Open
Abstract
The regulatory functions of the B-cell compartment play an important role in the development and suppression of the immune response. Disruption of their anti-inflammatory functions may lead to the acceleration of immunopathological processes, and to autoimmune diseases, in particular. Unfortunately, the exact mechanism underlying the functioning and development of regulatory B cells (Breg) has not yet been fully elucidated. Almost nothing is known about their specificity and the structure of their B-cell receptors (BCRs). In this research, we analyzed the BCR repertoire of the transitional Breg (tBreg) subpopulation with the CD19+CD24highCD38high phenotype in patients with multiple sclerosis (MS), using next-generation sequencing (NGS). We show, for the first time, that the immunoglobulin germline distribution in the tBreg subpopulation is different between MS patients and healthy donors. The registered variation was more significant in patients with a more severe form of the disease, highly active MS (HAMS), compared to those with benign MS (BMS). Our data suggest that during MS development, deviations in the immunoglobulin Breg repertoire occur already at the early stage of B-cell maturation, namely at the stage of tBregs: between immature B cells in the bone marrow and mature peripheral B cells.
Collapse
Affiliation(s)
- Y. A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - L. A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | | | | | | | - M. R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| | - N. A. Bykova
- Vavilov Institute of General Genetics RAS, Moscow, 119991 Russia
| | - V. S. Mukhina
- Vavilov Institute of General Genetics RAS, Moscow, 119991 Russia
- Institute for information transmission problems RAS, Moscow, 127051 Russia
| | - A. N. Kaminskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - A. E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| | - M. Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - A. V. Favorov
- Vavilov Institute of General Genetics RAS, Moscow, 119991 Russia
| | | | - A. A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473 Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
- Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
3
|
Lomakin YA, Zvyagin IV, Ovchinnikova LA, Kabilov MR, Staroverov DB, Mikelov A, Tupikin AE, Zakharova MY, Bykova NA, Mukhina VS, Favorov AV, Ivanova M, Simaniv T, Rubtsov YP, Chudakov DM, Zakharova MN, Illarioshkin SN, Belogurov AA, Gabibov AG. Deconvolution of B cell receptor repertoire in multiple sclerosis patients revealed a delay in tBreg maturation. Front Immunol 2022; 13:803229. [PMID: 36052064 PMCID: PMC9425031 DOI: 10.3389/fimmu.2022.803229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundB lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS.MethodsWe performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs.ResultsThe tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors.ConclusionsImpaired maturation of regulatory B cells is associated with MS progression.
Collapse
Affiliation(s)
- Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Dmitriy B. Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Artem Mikelov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nadezda A. Bykova
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
| | - Vera S. Mukhina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexander V. Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Maria Ivanova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Taras Simaniv
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maria N. Zakharova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| |
Collapse
|
4
|
Wu M, Zhao M, Wu H, Lu Q. Immune repertoire: Revealing the "real-time" adaptive immune response in autoimmune diseases. Autoimmunity 2021; 54:61-75. [PMID: 33650440 DOI: 10.1080/08916934.2021.1887149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The diversity of the immune repertoire (IR) enables the human immune system to distinguish multifarious antigens (Ags) that humans may encounter throughout life. At the same time, bias or abnormalities in the IR also pay a contribution to the pathogenesis of autoimmune diseases. Rapid advancements in high-throughput sequencing (HTS) technology have ushered in a new era of immune studies, revealing novel molecules and pathways that might result in autoimmunity. In the field of IR, HTS can monitor the immune response status and identify disease-specific immune repertoires. In this review, we summarize updated progress on the mechanisms of the IR and current related studies on four autoimmune diseases, particularly focusing on systemic lupus erythematosus (SLE). These autoimmune diseases can exhibit slightly or significantly skewed IRs and provide novel insights that inform our comprehending of disease pathogenesis and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Meiyu Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Emerging Strategies for Therapeutic Antibody Discovery from Human B Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32949403 DOI: 10.1007/978-981-15-4494-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Monoclonal antibodies from human sources are being increasingly recognized as valuable options in many therapeutic areas. These antibodies can show exquisite specificity and high potency while maintaining a desirable safety profile, having been matured and tolerized within human patients. However, the discovery of these antibodies presents important challenges, since the B cells encoding therapeutic antibodies can be rare in a typical blood draw and are short-lived ex vivo. Furthermore, the unique pairing of VH and VL domains in each B cell contributes to specificity and function; therefore, maintaining antibody chain pairing presents a throughput limitation. This work will review the various approaches aimed at addressing these challenges with an eye to next-generation methods for high-throughput discovery from the human B-cell repertoire.
Collapse
|
6
|
Bashford-Rogers RJM, Smith KGC, Thomas DC. Antibody repertoire analysis in polygenic autoimmune diseases. Immunology 2018; 155:3-17. [PMID: 29574826 PMCID: PMC6099162 DOI: 10.1111/imm.12927] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
High-throughput sequencing of the DNA/RNA encoding antibody heavy- and light-chains is rapidly transforming the field of adaptive immunity. It can address key questions, including: (i) how the B-cell repertoire differs in health and disease; and (ii) if it does differ, the point(s) in B-cell development at which this occurs. The advent of technologies, such as whole-genome sequencing, offers the chance to link abnormalities in the B-cell antibody repertoire to specific genomic variants and polymorphisms. Here, we discuss the current research using B-cell antibody repertoire sequencing in three polygenic autoimmune diseases where there is good evidence for a pathological role for B-cells, namely systemic lupus erythematosus, multiple sclerosis and rheumatoid arthritis. These autoimmune diseases exhibit significantly skewed B-cell receptor repertoires compared with healthy controls. Interestingly, some common repertoire defects are shared between diseases, such as elevated IGHV4-34 gene usage. B-cell clones have effectively been characterized and tracked between different tissues and blood in autoimmune disease. It has been hypothesized that these differences may signify differences in B-cell tolerance; however, the mechanisms and implications of these defects are not clear.
Collapse
Affiliation(s)
| | | | - David C Thomas
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies. Commun Biol 2018; 1:5. [PMID: 30271892 PMCID: PMC6123710 DOI: 10.1038/s42003-017-0006-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/07/2017] [Indexed: 11/09/2022] Open
Abstract
The human antibody repertoire is increasingly being recognized as a valuable source of therapeutic grade antibodies. However, methods for mining primary antibody-expressing B cells are limited in their ability to rapidly isolate rare and antigen-specific binders. Here we show the encapsulation of two million primary B cells into picoliter-sized droplets, where their cognate V genes are fused in-frame to form a library of scFv cassettes. We used this approach to construct natively paired phage-display libraries from healthy donors and drove selection towards cross-reactive antibodies targeting influenza hemagglutinin. Within 4 weeks we progressed from B cell isolation to a panel of unique monoclonal antibodies, including seven that displayed broad reactivity to different clinically relevant influenza hemagglutinin subtypes. Most isolated antibody sequences were not detected by next-generation sequencing of the paired repertoire, illustrating how this method can isolate extremely rare leads not likely found by existing technologies. Saravanan Rajan et al. describe a high-throughput method for isolating unique human monoclonal antibodies using picoliter sized droplets containing primary B cells. They show this approach can rapidly drive selection towards novel antibodies against clinically-relevant influenza hemagglutinin subtypes.
Collapse
|
8
|
Nevzorova TA, Zhao Q, Lomakin YA, Ponomareva AA, Mukhitov AR, Purohit PK, Weisel JW, Litvinov RI. Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA. BIONANOSCIENCE 2017; 7:132-147. [PMID: 29104846 DOI: 10.1007/s12668-016-0303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Interactions of DNA with proteins are essential for key biological processes and have both a fundamental and practical significance. In particular, DNA binding to anti-DNA antibodies is a pathogenic mechanism in autoimmune pathology, such as systemic lupus erythematosus. Here we measured at the single-molecule level binding and forced unbinding of surface-attached DNA and a monoclonal anti-DNA antibody MRL4 from a lupus erythematosus mouse. In optical trap-based force spectroscopy, a microscopic antibodycoated latex bead is trapped by a focused laser beam and repeatedly brought into contact with a DNA-coated surface. After careful discrimination of non-specific interactions, we showed that the DNA-antibody rupture force spectra had two regimes, reflecting formation of weaker (20-40 pN) and stronger (>40 pN) immune complexes that implies the existence of at least two bound states with different mechanical stability. The two-dimensional force-free off-rate for the DNA-antibody complexes was ~2.2 × 10-3 s-1, the transition state distance was ~0.94 nm, the apparent on-rate was ~5.26 s-1, and the stiffness of the DNA-antibody complex was characterized by a spring constant of 0.0021 pN/nm, suggesting that the DNA-antibody complex is a relatively stable, but soft and deformable macromolecular structure. The stretching elasticity of the DNA molecules was characteristic of single-stranded DNA, suggesting preferential binding of the MRL4 antibody to one strand of DNA. Collectively, the results provide fundamental characteristics of formation and forced dissociation of DNA-antibody complexes that help to understand principles of DNA-protein interactions and shed light on the molecular basis of autoimmune diseases accompanied by formation of anti-DNA antibodies.
Collapse
Affiliation(s)
- Tatiana A Nevzorova
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA.,Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St, Kazan 420008, Russian Federation
| | - Qingze Zhao
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania School of Engineering and Applied Science, 220 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Yakov A Lomakin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Mikluho-Maklaya St, Moscow 117997, Russian Federation
| | - Anastasia A Ponomareva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St, Kazan 420008, Russian Federation.,Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, 2/31 Lobachevsky str, Kazan 420111, Russian Federation
| | - Alexander R Mukhitov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania School of Engineering and Applied Science, 220 S. 33rd Street, Philadelphia, PA 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA.,Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St, Kazan 420008, Russian Federation
| |
Collapse
|
9
|
Bobik TV, Shurdova EM, Smirnov IV, Ponomarenko NA, Khurs EN, Knorre VD, Gabibov AG. Genetic Engineering of Native Chain Combinations of B-Cell Repertoires on the Surface of Methylotrophic Yeasts Pichia pastoris. Bull Exp Biol Med 2017; 163:263-267. [PMID: 28726211 DOI: 10.1007/s10517-017-3780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/24/2022]
Abstract
We designed genetic constructs for exposing Fab-fragment library of natively paired single cell B-cell receptors on the surface of Pichia pastoris yeast cells. We have previously obtained the A17 antibody in our laboratory [6]. In this study we showed that the newly designed genetic constructs provide a compatible level of A17 antibody Fab fragment on the surface of yeast cells as well as in the case of vectors containing DNA fragments corresponding to each chain of the antibody. The data suggest that the developed approach for constructing immunoglobulin gene libraries is adequate and fully convenient for studying properties of the real human B-lymphocyte repertoire.
Collapse
Affiliation(s)
- T V Bobik
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E M Shurdova
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I V Smirnov
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - N A Ponomarenko
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E N Khurs
- Laboratory of Chemical Bases and Biocatalysis V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - V D Knorre
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A G Gabibov
- Laboratory of Biocatalysis, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Lomakin Y, Arapidi GP, Chernov A, Ziganshin R, Tcyganov E, Lyadova I, Butenko IO, Osetrova M, Ponomarenko N, Telegin G, Govorun VM, Gabibov A, Belogurov A. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo. Front Immunol 2017; 8:777. [PMID: 28729867 PMCID: PMC5498468 DOI: 10.3389/fimmu.2017.00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.
Collapse
Affiliation(s)
- Yakov Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, Russia
| | - Georgii Pavlovich Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander Chernov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Evgenii Tcyganov
- Department of Immunology, Central Tuberculosis Research Institute RAS, Moscow, Russia
| | - Irina Lyadova
- Department of Immunology, Central Tuberculosis Research Institute RAS, Moscow, Russia
| | | | - Maria Osetrova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Georgy Telegin
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Vadim Markovich Govorun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Research Institute of Physical Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russia
| | - Alexander Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Pasman Y, Merico D, Kaushik AK. Preferential expression of IGHV and IGHD encoding antibodies with exceptionally long CDR3H and a rapid global shift in transcriptome characterizes development of bovine neonatal immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:495-507. [PMID: 27601209 DOI: 10.1016/j.dci.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
With an objective to understand natural development of bovine neonatal immunity, we analyzed 18 RNA-seq libraries from peripheral blood lymphocytes of three neonatal calves pre- (day 0) and post-colostrum (7, 14 and 28) uptake as compared to their dams. A significant global shift in neonatal transcriptome occurs within first week post-birth, in contrast to dams, with an upregulation of 717 genes. Global pathway analysis of the transcriptome revealed 110 differentially expressed immune-related genes, such as, complement, MHCII, chemokine receptors, defensins and cytokines, at birth. The signaling molecules (LAX1, BLK) and transcription factors (GATA3, FOXP3) are expressed at high levels. High expression of GATA3 transcription factor at birth seems to skew the neonatal immune response towards TH2 type. The high levels of T-cell signaling molecules, CD3G and CD3D, at birth are important in neonatal T cell development. Unlike adults, IGKC expression is high in the neonates where IGKV12 is preferentially expressed at birth. But IGLC is predominant in both neonates and adult where IGLV3.4 is preferentially expressed in B cells at birth. Both IGHM and IGHD are expressed at birth and IGHM achieves adult levels by day 7. This is followed by IGHA and IGHG expression 14-28 days post-birth. Importantly, preferential expression of IGHV1S1(BF4E9) and longest IGHD2(DH2) genes that encode immunoglobulin with exceptionally long CDR3H at birth indicates their critical role, as B cell antigen receptor, in the B cell development via idiotype-anti-idiotype interactions. The transcriptome signatures described here permit assessment bovine neonatal immunocompetence. Bovine neonates acquire innate and IgM-mediated humoral immunocompetence within first week post-birth.
Collapse
Affiliation(s)
- Yfke Pasman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Azad K Kaushik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
12
|
Lomakin Y, Shmidt A, Glagoleva I, Okunola J, Vaskina M, Belogurov A, Gabibov A. Myelin-Reactive Monoclonal Antibodies from Multiple Sclerosis Patients Cross-React with Nucleoproteins in HEp-2 Lysate. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Díez P, Fuentes M. Proteogenomics for the Comprehensive Analysis of Human Cellular and Serum Antibody Repertoires. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:153-162. [PMID: 27686811 DOI: 10.1007/978-3-319-42316-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast repertoire of immunoglobulins produced by the immune system is a consequence of the huge amount of antigens to which we are exposed every day. The diversity of these immunoglobulins is due to different mechanisms (including VDJ recombination, somatic hypermutation, and antigen selection). Understanding how the immune system is capable of generating this diversity and which are the molecular bases of the composition of immunoglobulins are key challenges in the immunological field. During the last decades, several techniques have emerged as promising strategies to achieve these goals, but it is their combination which appears to be the fruitful solution for increasing the knowledge about human cellular and serum antibody repertoires.In this chapter, we address the diverse strategies focused on the analysis of immunoglobulin repertoires as well as the characterization of the genomic and peptide sequences. Moreover, the advantages of combining various -omics approaches are discussed through review different published studies, showing the benefits in clinical areas.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Avda. Universidad de Coimbra, S/N 37007, Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Avda. Universidad de Coimbra, S/N 37007, Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Avda. Universidad de Coimbra, S/N 37007, Salamanca, Spain. .,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Avda. Universidad de Coimbra, S/N 37007, Salamanca, Spain.
| |
Collapse
|
14
|
Ziganshin RH, Ivanova OM, Lomakin YA, Belogurov AA, Kovalchuk SI, Azarkin IV, Arapidi GP, Anikanov NA, Shender VO, Piradov MA, Suponeva NA, Vorobyeva AA, Gabibov AG, Ivanov VT, Govorun VM. The Pathogenesis of the Demyelinating Form of Guillain-Barre Syndrome (GBS): Proteo-peptidomic and Immunological Profiling of Physiological Fluids. Mol Cell Proteomics 2016; 15:2366-78. [PMID: 27143409 PMCID: PMC4937510 DOI: 10.1074/mcp.m115.056036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.
Collapse
Affiliation(s)
- Rustam H Ziganshin
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation;
| | - Olga M Ivanova
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Yakov A Lomakin
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Alexey A Belogurov
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Sergey I Kovalchuk
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Igor V Azarkin
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Georgij P Arapidi
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation; §Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny 141700, Russian Federation
| | - Nikolay A Anikanov
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Victoria O Shender
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Mikhail A Piradov
- ¶Research Center of Neurology, Volokolamskoye highway, 80, Moscow 125367, Russian Federation
| | - Natalia A Suponeva
- ¶Research Center of Neurology, Volokolamskoye highway, 80, Moscow 125367, Russian Federation
| | - Anna A Vorobyeva
- ¶Research Center of Neurology, Volokolamskoye highway, 80, Moscow 125367, Russian Federation
| | - Alexander G Gabibov
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Vadim T Ivanov
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation
| | - Vadim M Govorun
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation; §Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny 141700, Russian Federation; ‖Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation
| |
Collapse
|
15
|
Use of the VH6-1 gene segment to code for anti-interleukin-18 autoantibodies in multiple sclerosis. Immunogenetics 2016; 68:237-46. [PMID: 26743536 DOI: 10.1007/s00251-015-0895-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
We investigated whether levels and repertoires of anti-interleukin-18 (IL-18) autoantibodies (auto-Abs) differ in multiple sclerosis (MS) patients and healthy donors (HDs). IL-18 concentration in MS patients' sera was higher than in HD, but the level of anti-IL-18 auto-Abs was lower in MS patients. Correlation patterns of IL-18/anti-IL-18 auto-Abs system differed in HD and MS patients, so we have compared segment composition of the anti-IL-18 single-chain variable fragments (scFvs) selected from MS and naïve phage display libraries. Considerable differences between anti-IL-18 auto-Abs of these libraries were found. MS panel contained auto-Abs displaying both signs of "fetal" and somatically hypermutated repertoires. Naïve panel mainly contained the naïve antibodies. These variations from the norm are possible results of abnormal regulation of the repertoire perhaps determined by remodeling of the molecular mechanisms involved in the V(D)J recombination and/or abnormal selection by antigen in MS pathogenesis.
Collapse
|
16
|
Molecular mechanisms of growth and progression of malignant neoplasms. Mol Biol 2015. [DOI: 10.1134/s0026893315050179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zavalishin IA, Belogurov AA, Lomakin YA, Ponomarenko NA, Morozova SN, Suslina ZA, Piradov MA, Illarioshkin SN, Gabibov AG. Clinical and experimental studies of multiple sclerosis in Russia: experience of the leading national research centers. Degener Neurol Neuromuscul Dis 2015; 5:83-90. [PMID: 32669915 PMCID: PMC7337142 DOI: 10.2147/dnnd.s46023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 12/04/2022] Open
Abstract
Mechanisms of axonal damage and adaptive capacity in multiple sclerosis (MS), including cortical reorganization, have been actively studied in recent years. The lack of regenerative capabilities and the irreversibility of neurodegeneration in MS are critical factors for the optimization of MS treatment. In this study, we present the results of clinical and basic studies in the field of MS by two leading Russian centers. Clinical and neuroimaging correlations show that spinal damage in MS is accompanied by functional reorganization of the cerebral cortex, which is determined not only by the efferent component but also by the afferent component. Comparative analysis of MS treatment with both interferon β1b (IFN-β1b) and IFN-β1a at a dosage of 22 µg for 3 years through subcutaneous administration and glatiramer acetate showed equally high efficiency in reducing the number of exacerbations in relapsing-remitting MS and secondary-progressive MS. We demonstrate a reduced risk of disability in relapsing-remitting MS and secondary-progressive MS patients in all groups treated with IFN-β1 and glatiramer acetate. MS appears to be a disease that would greatly benefit from the development of personalized therapy; thus, adequate molecular predictors of myelin degradation are greatly needed. Therefore, novel ideas related to the viral hypothesis of the etiology of MS and new targets for therapeutic intervention are currently being developed. In this manuscript, we discuss findings of both clinical practice and fundamental research reflecting challenges and future directions of MS treatment in the Russian Federation.
Collapse
Affiliation(s)
| | - Alexey A Belogurov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.,Institute of Gene Biology, RAS
| | - Yakov A Lomakin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | - Alexander G Gabibov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.,Chemistry Department, Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Sekar D, Thirugnanasambantham K, Hairul Islam VI, Saravanan S. Sequencing approaches in cancer treatment. Cell Prolif 2014; 47:391-5. [PMID: 25131793 DOI: 10.1111/cpr.12124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/23/2014] [Indexed: 12/15/2022] Open
Abstract
Use of sequencing approaches is an important aspect in the field of cancer genomics, where next-generation sequencing has already been utilized for targeting oncogenes or tumour-suppressor genes, that can be sequenced in a short time period. Alterations such as point mutations, insertions/deletions, copy number alterations, chromosomal rearrangements and epigenetic changes are encountered in cancer cell genomes, and application of various NGS technologies in cancer research will encounter such modifications. Rapid advancement in technology has led to exponential growth in the field of genomic analysis. The $1000 Genome Project (in which the goal is to sequence an entire human genome for $1000), and deep sequencing techniques (which have greater accuracy and provide a more complete analysis of the genome), are examples of rapid advancements in the field of cancer genomics. In this mini review, we explore sequencing techniques, correlating their importance in cancer therapy and treatment.
Collapse
Affiliation(s)
- D Sekar
- Pondicherry Centre for Biological Sciences, Pondicherry, 605 005, India
| | | | | | | |
Collapse
|