1
|
Sun M, Lu Z, Jiang X, Guo X, Zhang Y, Huang X, Cao M, Zhang C, Yu W. Inhalation of ferrate-disinfected Escherichia coli caused lung injury via endotoxin-induced oxidative stress and inflammation response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173760. [PMID: 38857800 DOI: 10.1016/j.scitotenv.2024.173760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
Ferrate (Fe(VI)) is an environmentally friendly disinfectant that is widely used to eradicate microbes in reclaimed water. However, the potential health risks associated with inhalation of Fe(VI)-treated bacteria-laden reclaimed water remains uncertain. We aimed to explore the inhalation hazards and potential mechanisms of K2FeO4-treated Escherichia coli (E. coli, ATCC 25922). Our findings indicated that Fe(VI) disinfection induced a dose- and time-dependent E. coli inactivation, accompanied by a rapid release of the bacterial endotoxin, lipopolysaccharide (LPS). Scanning electron microscopy (SEM) observations indicate that Fe(VI)-induced endotoxin production consists of at least two stages: initial binding of endotoxin to bacteria and subsequent dissociation to release free endotoxin. Furthermore, Fe(VI) disinfection was not able to effectively eliminate pure or E. coli-derived endotoxins. The E. coli strain used in this study lacks lung infection capability, thus the inhalation of bacteria alone failed to induce severe lung injury. However, mice inhaled exposure to Fe(VI)-treated E. coli showed severe impairment of lung structure and function. Moreover, we observed an accumulation of neutrophil/macrophage recruitment, cell apoptosis, and ROS generation in the lung tissue of mice subjected to Fe(VI)-treated E. coli. RNA sequencing (RNA-seq) and PCR results revealed that genes involved with endotoxin stimuli, cell apoptosis, antioxidant defence, inflammation response, chemokines and their receptors were upregulated in response to Fe(VI)-treated E. coli. In conclusion, Fe(VI) is ineffective in eliminating endotoxins and can trigger secondary hazards owing to endotoxin release from inactivated bacteria. Aerosol exposure to Fe(VI)-treated E. coli causes considerable damage to lung tissue by inducing oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Muhan Sun
- School of Military Preventive Medicine, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an 710032, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhou Lu
- Medical Service Training Base, Air Force University, Shaanxi, Xi'an 710032, China
| | - Xiaoxu Jiang
- Computer Department of Basic Medicine School, Air Force University, Shaanxi, Xi'an 710032, China
| | - Xiaojie Guo
- School of Military Preventive Medicine, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an 710032, China
| | - Yujiao Zhang
- School of Military Preventive Medicine, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an 710032, China
| | - Xinyi Huang
- School of Military Preventive Medicine, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an 710032, China
| | - Meng Cao
- School of Military Preventive Medicine, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an 710032, China
| | - Chongmiao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weihua Yu
- School of Military Preventive Medicine, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Zhang YY, Li J, Li F, Xue S, Xu QY, Zhang YQ, Feng L. Palmitic acid combined with γ-interferon inhibits gastric cancer progression by modulating tumor-associated macrophages' polarization via the TLR4 pathway. J Cancer Res Clin Oncol 2023; 149:7053-7067. [PMID: 36862159 DOI: 10.1007/s00432-023-04655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) constitute the main infiltrating immune cells in the solid tumor microenvironment. Amounting studies have analyzed the antitumor effect on immune response induced by Toll-like receptor (TLR) agonists, such as lipopolysaccharide (LPS), γ-interferon (γ-IFN), and palmitic Acid (PA). However, their combined treatment for gastric cancer (GC) has not been illuminated. METHODS We investigated the relevance of macrophage polarization and the effect of PA and γ-IFN in GC in vitro and in vivo. M1 and M2 macrophage-associated markers were measured by real-time quantitative PCR and flow cytometry, and the activation level of the TLR4 signaling pathways was evaluated by western blot analysis. The effect of PA and γ-IFN on the proliferation, migration, and invasion of GC cells (GCCs) was evaluated by Cell-Counting Kit-8, transwell assays, and wound-healing assays. In vivo animal models were used to verify the effect of PA and γ-IFN on tumor progression, and the M1 and M2 macrophage markers, CD8 + T lymphocytes, regulatory T cells (Treg) cells, and the myeloid-derived suppressor cells (MDSCs) in tumor tissues were analyzed by flow cytometry and immunohistochemical (IHC). RESULTS The results showed that this combination strategy enhanced M1-like macrophages and diminished M2-like macrophages through the TLR4 signaling pathway in vitro. In addition, the combination strategy impairs the proliferative and migratory activity of GCC in vitro and in vivo. While, the antitumor effect was abolished using the TAK-424 (a specific TLR-4 signaling pathway inhibitor) in vitro. CONCLUSIONS The combined treatment of PA and γ-IFN inhibited GC progression by modulating macrophages polarization via the TLR4 pathway.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Shuai Xue
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Qing-Yu Xu
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ya-Qiong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China.
| |
Collapse
|
3
|
Li Y, Zhao L, Sun C, Yang J, Zhang X, Dou S, Hua Q, Ma A, Cai J. Regulation of Gut Microflora by Lactobacillus casei Zhang Attenuates Liver Injury in Mice Caused by Anti-Tuberculosis Drugs. Int J Mol Sci 2023; 24:ijms24119444. [PMID: 37298396 DOI: 10.3390/ijms24119444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The gut-liver axis may provide a new perspective for treating anti-tuberculosis drug-induced liver injury (ATDILI). Herein, the protective effect of Lactobacillus casei (Lc) was investigated by modulating gut microflora (GM) and the toll like receptor 4 (TLR4)-nuclear factor (NF)-κB-myeloiddifferentiationfactor 88 (MyD88) pathway. C57BL/6J mice were given three levels of Lc intragastrically for 2 h before administering isoniazid and rifampicin for 8 weeks. Blood, liver, and colon tissues, as well as cecal contents, were collected for biochemical and histological examination, as well as Western blot, quantitative real time polymerase chain reaction (qRT-PCR), and 16S rRNA analyses. Lc intervention decreased alkaline phosphatase (ALP), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and tumor necrosis factor (TNF)-α levels (p < 0.05), recovered hepatic lobules, and reduced hepatocyte necrosis to alleviate liver injury induced by anti-tuberculosis drugs. Moreover, Lc also increased the abundance of Lactobacillus and Desulfovibrio and decreased Bilophila abundance, while enhancing zona occludens (ZO)-1 and claudin-1 protein expression compared with the model group (p < 0.05). Furthermore, Lc pretreatment reduced the lipopolysaccharide (LPS) level and downregulated NF-κB and MyD88 protein expression (p < 0.05), thus restraining pathway activation. Spearman correlation analysis indicated that Lactobacillus and Desulfovibrio were positively correlated with ZO-1 or occludin protein expression and negatively correlated with pathway protein expression. Desulfovibrio had significant negative relationships with alanine aminotransferase (ALT) and LPS levels. In contrast, Bilophila had negative associations with ZO-1, occludin, and claudin-1 protein expressions and positive correlations with LPS and pathway proteins. The results prove that Lactobacillus casei can enhance the intestinal barrier and change the composition of the gut microflora. Moreover, Lactobacillus casei may also inhibit TLR4-NF-κB-MyD88 pathway activation and alleviate ATDILI.
Collapse
Affiliation(s)
- Yue Li
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Liangjie Zhao
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Changyu Sun
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jingyi Yang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Xinyue Zhang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Sheng Dou
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Qinglian Hua
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
4
|
Zhao H, Gao X, Liu Z, Zhang L, Fang X, Sun J, Zhang Z, Sun Y. Sodium Alginate Prevents Non-Alcoholic Fatty Liver Disease by Modulating the Gut-Liver Axis in High-Fat Diet-Fed Rats. Nutrients 2022; 14:nu14224846. [PMID: 36432531 PMCID: PMC9697635 DOI: 10.3390/nu14224846] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have suggested that the sodium alginate (SA) is beneficial for the treatment of non-alcoholic fatty liver disease (NAFLD), while the potential mechanisms are largely unknown. The present study aimed to clarify the effects and potential mechanisms of SA in preventing NAFLD via the gut−liver axis. Thirty-two male Sprague−Dawley rats were randomly divided into four groups: normal control group (NC); high-fat diet group (HFD); HFD with 50 mg/kg/d sodium alginate group (LSA); HFD with 150 mg/kg/d sodium alginate group (HSA). After 16 weeks, the rats were scarified to collect blood and tissues. The results indicated that SA significantly reduced their body weight, hepatic steatosis, serum triglyceride (TG), alanine transaminase (ALT) and tumor necrosis factor α (TNF-α) levels and increased serum high-density lipoprotein-cholesterol (HDL-C) levels in comparison with HFD group (p < 0.05). The elevated mRNA and protein expression of genes related to the toll-like receptor 4 (TLR-4)/nuclear factor-kappa B (NF-κB)/nod-like receptor protein 3 (NLRP3) inflammatory signaling pathway in the liver of HFD-fed rats was notably suppressed by SA. In terms of the gut microbiota, the LSA group showed a significantly higher fecal abundance of Oscillospiraceae_UCG_005, Butyricicoccaceae_UCG_009 and Colidextribacter compared with the HFD group (p < 0.05). The rats in the HSA group had a higher abundance of unclassified_Lachnospiraceae, Colidextribacter and Oscillibacter compared with the HFD-associated gut community (p < 0.05). In addition, rats treated with SA showed a significant increase in fecal short chain fatty acids (SCFAs) levels and a decline in serum lipopolysaccharide (LPS) levels compared with the HFD group (p < 0.05). Moreover, the modulated bacteria and microbial metabolites were notably correlated with the amelioration of NAFLD-related indices and activation of the hepatic TLR4/NF-κB/NLRP3 pathway. In conclusion, SA prevented NAFLD and the potential mechanism was related to the modulation of the gut−liver axis.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhizuo Liu
- Women and Children’s Hospital Affiliated to Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China
| | - Xuan Fang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China
| | - Jianping Sun
- Qingdao Centers for Disease Control and Prevention, Qingdao 266033, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing 100191, China
- Correspondence: (Z.Z.); (Y.S.); Tel.: +86-10-82801575 (Z.Z.); +86-138-63980712 (Y.S.)
| | - Yongye Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.Z.); (Y.S.); Tel.: +86-10-82801575 (Z.Z.); +86-138-63980712 (Y.S.)
| |
Collapse
|
5
|
Zhang G, Wang T, Zhou J, Guo H, Qu G, Guo X, Jia H, Zhu L. Intrinsic mechanisms underlying the highly efficient removal of bacterial endotoxin and related risks in tailwater by dielectric barrier discharge plasma. WATER RESEARCH 2022; 226:119214. [PMID: 36240712 DOI: 10.1016/j.watres.2022.119214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Endotoxin is widely present in aquatic environments and can induce adverse health effects. In this study, dielectric barrier discharge (DBD) plasma was used to remove bacterial endotoxin from the tailwater of a wastewater treatment plant. The removal efficiency of total endotoxin activity was up to 92% with low electrical energy consumption (0.43 J mL-1%-1) after 180 s of the DBD plasma treatment, which was better than other previously reported methods. In the early stage of DBD plasma oxidation, the expression of genes related to cell morphology and bacterial antioxidant enzyme synthesis was distinctly down-regulated, suggesting that cell integrity was destroyed, leading to endotoxin release into the solution. Additionally, endotoxin synthesis in the cells was suppressed. The endotoxin in the solution was effectively removed by ·OH, 1O2, and O2·-generated by the DBD plasma, with second-order reaction rates of 2.69 × 1010, 2.20 × 107, and 8.60 × 108 mol-1 L s-1, respectively. The core toxic component of endotoxin (lipid A) was attacked by these strong oxidative species, generating smaller molecular fragments with low toxicity. Consequently, the inflammatory factors IL-6, IL-β, and TNF-α of endotoxin decreased by 3.4-4.8 folds after the DBD plasma treatment, implying that the health risks posed by endotoxin were greatly reduced. This study revealed the intrinsic mechanisms of the highly efficient removal of bacterial endotoxin by DBD plasma oxidation.
Collapse
Affiliation(s)
- Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
6
|
Naïtaleb R, Denys A, Allain F, Ausseil J, Toumieux S, Kovensky J. Synthesis of new sulfated disaccharides for the modulation of TLR4-dependent inflammation. Org Biomol Chem 2021; 19:4346-4351. [PMID: 33908564 DOI: 10.1039/d1ob00692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural sulfated glycans are key players in inflammation through TLR4 activation; therefore synthetic exogenous sulfated saccharides can be used to downregulate inflammation processes. We have designed and synthesized new sulfated compounds based on small and biocompatible carbohydrates that are able to cross the BBB. A suitable protected donor and acceptor, obtained from a unique precursor, have been stereoselectively glycosylated to give an orthogonally protected cellobiose disaccharide. Selective deprotection and sulfation allowed the syntheses of four differentially sulfated disaccharides, which have been characterized by NMR, HRMS and MS/MS. Together with their partially protected precursors, the new compounds were tested on HEK-TLR4 cells. Our results show the potential of small oligosaccharides to modulate TLR4 activity, confirming the need for sulfation and the key role of the 6-sulfate groups to trigger TLR4 signalization.
Collapse
Affiliation(s)
- Rachid Naïtaleb
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, LG2A CNRS UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France.
| | | | | | | | | | | |
Collapse
|
7
|
Induction of Chicken Host Defense Peptides within Disease-Resistant and -Susceptible Lines. Genes (Basel) 2020; 11:genes11101195. [PMID: 33066561 PMCID: PMC7602260 DOI: 10.3390/genes11101195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Host defense peptides (HDPs) are multifunctional immune molecules that respond to bacterial and viral pathogens. In the present study, bone marrow-derived cells (BMCs) and chicken embryonic fibroblasts (CEFs) were cultured from a Leghorn line (Ghs6) and Fayoumi line (M15.2), which are inbred chicken lines relatively susceptible and resistant to various diseases, respectively. The cells were treated by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly(I:C)) and, subsequently, mRNA expression of 20 chicken HDPs was analyzed before and after the stimulation. At homeostasis, many genes differed between the chicken lines, with the Fayoumi line having significantly higher expression (p < 0.05) than the Leghorn line: AvBD1, 2, 3, 4, 6, and 7 in BMCs; CATH1, CATH3, and GNLY in CEFs; and AvDB5, 8, 9, 10, 11, 12, 13 in both BMCs and CEFs. After LPS treatment, the expression of AvBD1, 2, 3, 4, 5, 9, 12, CATH1, and CATHB1 was significantly upregulated in BMCs, but no genes changed expression in CEFs. After poly(I:C) treatment, AvBD2, 11, 12, 13, CATHB1 and LEAP2 increased in both cell types; CATH2 only increased in BMCs; and AvBD3, 6, 9, 14, CATH1, CATH3, and GNLY only increased in CEFs. In addition, AvBD7, AvBD14, CATH1, CATH2, GNLY, and LEAP2 showed line-specific expression dependent upon cell type (BMC and CEF) and stimulant (LPS and poly(I:C)). The characterization of mRNA expression patterns of chicken HDPs in the present study suggests that their functions may be associated with multiple types of disease resistance in chickens.
Collapse
|
8
|
Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol 2020; 11:1210. [PMID: 32765484 PMCID: PMC7381287 DOI: 10.3389/fimmu.2020.01210] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-Like Receptor 4 (TLR4) is one of the receptors of innate immunity. It is activated by Pathogen- and Damage-Associated Molecular Patterns (PAMPs and DAMPs) and triggers pro-inflammatory responses that belong to the repertoire of innate immune responses, consequently protecting against infectious challenges and boosting adaptive immunity. Mild TLR4 stimulation by non-toxic molecules resembling its natural agonist (lipid A) provided efficient vaccine adjuvants. The non-toxic TLR4 agonist monophosphoryl lipid A (MPLA) has been approved for clinical use. This suggests the development of other TLR4 agonists as adjuvants or drugs for cancer immunotherapy. TLR4 excessive activation by a Gram-negative bacteria lipopolysaccharide (LPS) leads to sepsis, while TLR4 stimulation by DAMPs is a common mechanism in several inflammatory and autoimmune diseases. TLR4 inhibition by small molecules and antibodies could therefore provide access to innovative therapeutics targeting sepsis as well as acute and chronic inflammations. The potential use of TLR4 antagonists as anti-inflammatory drugs with unique selectivity and a new mechanism of action compared to corticosteroids or other non-steroid anti-inflammatory drugs fueled the search for compounds of natural or synthetic origin able to block or inhibit TLR4 activation and signaling. The wide spectrum of clinical settings to which TLR4 inhibitors can be applied include autoimmune diseases (rheumatoid arthritis, inflammatory bowel diseases), vascular inflammation, neuroinflammations, and neurodegenerative diseases. The last advances (from 2017) in TLR4 activation or inhibition by small molecules (molecular weight <2 kDa) are reviewed here. Studies on pre-clinical validation of new chemical entities (drug hits) on cellular or animal models as well as new clinical studies on previously developed TLR4 modulators are reported. Innovative TLR4 modulators discovered by computer-assisted drug design and an artificial intelligence approach are described. Some "old" TLR4 agonists or antagonists such as MPLA or Eritoran are under study for repositioning in different pharmacological contexts. The mechanism of action of the molecules and the level of TLR4 involvement in their biological activity are critically discussed.
Collapse
Affiliation(s)
- Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
9
|
Sassu EL, Kangethe RT, Settypalli TBK, Chibssa TR, Cattoli G, Wijewardana V. Development and evaluation of a real-time PCR panel for the detection of 20 immune markers in cattle and sheep. Vet Immunol Immunopathol 2020; 227:110092. [PMID: 32673891 DOI: 10.1016/j.vetimm.2020.110092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
The establishment of a panel of immune markers is of paramount importance to understand the different transcription patterns of infectious diseases in livestock. The array of commercially available immunological assays for cattle and sheep is currently limited, due to the lack of antibodies for these species. Even though SYBR Green based real time quantitative PCR (qPCR) is the most commonly used method to study cytokine transcription in ruminants, a lack of standardization impairs its implementation in the study of different ruminant diseases. In order to obtain reliable qPCR results, several variables need to be considered: choice of reference genes for optimal normalization, variation of annealing temperature among primer sets, and assay specificity and sensitivity. In this study, we developed and validated a panel of immune markers in bovine and ovine samples using SYBR Green based qPCR in a cost-effective way with multiple primer sets optimised to amplify at a common thermal cycling temperature. Twenty primer sets were designed to quantify immune markers (IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-15, IL-18, IL-23, TNF-α, IFN-γ, IFN-α, Ki-67, NFkB-65, TLR-3, TLR-4, TLR-8 and Rig-1) in ovine and bovine templates. For optimal normalization and selection of suitable reference genes, primer sets that measure the transcription of five reference genes were also included in the panel. The amplification efficiency, linearity and specificity was validated for all target genes. Optimal amplification conditions were achieved in both ovine and bovine samples for all gene targets, with the exception of Ki67. Relative quantification studies were performed on ovine and bovine mRNA obtained from sheep peripheral blood mononuclear cells (PBMCs) stimulated with three different treatments (PMA/Ionomycin, Concanavalin A (Con A) and pokeweed mitogen (PWM)). Pokeweed and ConA efficiently induced gene transcription of most of the targeted genes, while PMA/Ionomycin showed a weaker induction. Finally, we further assessed usability of our panel by running it on bovine monocyte derived dendritic cells (MoDCs) stimulated with different vaccines. Results confirmed the induction of a specific pro-inflammatory gene transcription pattern by rabies vaccine, which resembles the one occurring during viral infection. Altogether, we validated the efficiency and usability of an extended real-time PCR panel that gives the possibility to rapidly measure a broad spectrum of ovine and bovine immune markers by using a single set of reagents and protocol thus representing a valid and cost-effective tool for research purposes.
Collapse
Affiliation(s)
- Elena L Sassu
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Richard T Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Tirumala Bharani K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Tesfaye Rufael Chibssa
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| |
Collapse
|
10
|
Aurelian L, Balan I. GABA AR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology (Berl) 2019; 236:3023-3043. [PMID: 31030249 DOI: 10.1007/s00213-019-05220-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands and are increasingly recognized for their impact on homeostasis and its dysregulation in the nervous system. TLR signaling participates in brain injury and addiction, but its role in the alcohol-seeking behavior, which initiates alcohol drinking, is still poorly understood. In this review, we discuss our findings designed to elucidate the potential contribution of the activated TLR4 signal located in neurons, on impulsivity and the predisposition to initiate alcohol drinking (binge drinking). RESULTS Our findings indicate that the TLR4 signal is innately activated in neurons from alcohol-preferring subjects, identifying a genetic contribution to the regulation of impulsivity and the alcohol-seeking propensity. Signal activation is through the non-canonical, previously unknown, binding of TLR4 to the α2 subunit of the γ-aminobutyric 2 acid A receptor (GABAAR α2). Activation is sustained by the stress hormone corticotrophin-releasing factor (CRF) and additional still poorly recognized ligand/scaffold proteins. Focus is on the effect of TLR4 signal activation on the balance between pro- and anti-inflammatory chemokines [chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-X3-C motif) ligand 1 (CX3CL1)] and its effect on binge drinking. CONCLUSION The results are discussed within the context of current findings on the distinct activation and functions of TLR signals located in neurons, as opposed to immune cells. They indicate that the balance between pro- and anti-inflammatory TLR4 signaling plays a major role in binge drinking. These findings have major impact on future basic and translational research, including the development of potential therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Stanford University School of Medicine OFDD, Stanford, CA, 94305, USA.
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
11
|
Li R, Zhang L, Tang Z, Li T, Li G, Zhang R, Ge M. Effects of Fungal Polysaccharide on Oxidative Damage and TLR4 Pathway to the Central Immune Organs in Cadmium Intoxication in Chickens. Biol Trace Elem Res 2019; 191:464-473. [PMID: 30632076 DOI: 10.1007/s12011-018-1627-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
Cadmium (Cd) can cause animal organism damage, but there have been few studies on the damage of cadmium to the immune organs of birds. Most fungal polysaccharide has antioxidant and immunomodulatory effects. The experimental study investigated the effects of fungal polysaccharide (Agaricus blazei Murill polysaccharide and Ganoderma luciduccharide) on the oxidative damage of central immune organs (thymus and bursa of Fabricius) and on the Toll-like receptor 4 (TLR4) pathway in cadmium-poisoned chickens. The results showed that Agaricus blazei polysaccharide and Ganoderma lucidum polysaccharide can reduce cadmium content, TLR4 expression, inflammatory factor (IL-1β, IL-6, TNF-α) content, and lipid peroxidation product MDA content and increase the activity of antioxidant enzymes SOD and GSH-Px in thymus and bursa of cadmium poisoning chickens. Ganoderma lucidum polysaccharide could decrease the expression of TLR4, IL-1β, and IL-6 in cadmium poisoning peripheral blood lymphocytes of chicken, and TLR4 inhibitor had the same effect. The results demonstrated the protective effects of Agaricus blazei Murill polysaccharide and Ganoderma lucidum polysaccharides on the damage of the central immune organs of chickens caused by cadmium poisoning were closely related to the TLR4 signaling pathway and oxidative stress.
Collapse
Affiliation(s)
- Ruyue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Linan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Zequn Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tianqi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Ren Y, Kong J, Xue J, Shi X, Li H, Qiao J, Lu Y. Effects of ozonation on the activity of endotoxin and its inhalation toxicity in reclaimed water. WATER RESEARCH 2019; 154:153-161. [PMID: 30782557 DOI: 10.1016/j.watres.2019.01.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Aerosolized reclaimed water can cause inflammatory responses in lung after inhalation, and endotoxin has been identified as the main inducer. Since the effects of disinfection treatments on endotoxins had conflicting results, this study explored the changes of endotoxin activity and inflammation inducing ability of reference endotoxin, gram-negative bacteria solutions and reclaimed water after ozonation respectively, and found that LAL assay based endotoxin activity and mouse inhalation exposure based inflammation examination had inconsistent results. The excessive ozone could not remove the endotoxin activity, but was able to reduce the inflammation inducing ability of free endotoxin. When treating on gram-negative strains, ozone first released the cell-bound endotoxin and caused the dramatic increase of endotoxin activity. But for the inflammatory response, despite the rapid increase at the very beginning, it immediately dropped back with further ozonation. The endotoxin aggregate size was proposed as a key regulator of the toxicity of endotoxin, which was modified by ozone oxidation. In real reclaimed water, insufficient ozone significantly enhanced the inflammatory response, but when the ozone dosages were large enough, the inflammation could be drawn back to the original level, which was consistent with the observations from pure endotoxin and bacteria. This work demonstrates that the endotoxin activity cannot predict the endotoxin-induced toxicity of ozone treated water, and low dosage of ozone treatment may even increase the health risk of reclaimed water.
Collapse
Affiliation(s)
- Yunru Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiayang Kong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinling Xue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaojie Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huijun Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Cochet F, Facchini FA, Zaffaroni L, Billod JM, Coelho H, Holgado A, Braun H, Beyaert R, Jerala R, Jimenez-Barbero J, Martin-Santamaria S, Peri F. Novel carboxylate-based glycolipids: TLR4 antagonism, MD-2 binding and self-assembly properties. Sci Rep 2019; 9:919. [PMID: 30696900 PMCID: PMC6351529 DOI: 10.1038/s41598-018-37421-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
New monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. The binding of the synthetic compounds to purified, functional recombinant human MD-2 was studied by four independent methods. All compounds bound to MD-2 with similar affinities and inhibited in a concentration-dependent manner the LPS-stimulated TLR4 signaling in human and murine cells, while being inactive as TLR4 agonists when provided alone. A compound of the panel was tested in vivo and was not able to inhibit the production of proinflammatory cytokines in animals. This lack of activity is probably due to strong binding to serum albumin, as suggested by cell experiments in the presence of the serum. The interesting self-assembly property in solution of this type of compounds was investigated by computational methods and microscopy, and formation of large vesicles was observed by cryo-TEM microscopy.
Collapse
Affiliation(s)
- Florent Cochet
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Fabio A Facchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Lenny Zaffaroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Jean-Marc Billod
- Department of Structural and Chemical Biology, Centro de Investigaciones Biologicas, CIB-CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Helena Coelho
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801 A, 48170, Derio, Spain.,UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Aurora Holgado
- Unit for Molecular Signal Transduction in Inflammation VIB-UGent Center for Inflammation Research, VIB Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Harald Braun
- Unit for Molecular Signal Transduction in Inflammation VIB-UGent Center for Inflammation Research, VIB Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Rudi Beyaert
- Unit for Molecular Signal Transduction in Inflammation VIB-UGent Center for Inflammation Research, VIB Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Jesus Jimenez-Barbero
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801 A, 48170, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain
| | - Sonsoles Martin-Santamaria
- Department of Structural and Chemical Biology, Centro de Investigaciones Biologicas, CIB-CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy.
| |
Collapse
|
14
|
The GABA A Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Brain Sci 2018; 8:brainsci8040072. [PMID: 29690521 PMCID: PMC5924408 DOI: 10.3390/brainsci8040072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 01/06/2023] Open
Abstract
Alcoholism initiates with episodes of excessive alcohol drinking, known as binge drinking, which is one form of excessive drinking (NIAAA Newsletter, 2004) that is related to impulsivity and anxiety (Ducci et al., 2007; Edenberg et al., 2004) and is also predictive of smoking status. The predisposition of non-alcohol exposed subjects to initiate binge drinking is controlled by neuroimmune signaling that includes an innately activated neuronal Toll-like receptor 4 (TLR4) signal. This signal also regulates cognitive impulsivity, a heritable trait that defines drug abuse initiation. However, the mechanism of signal activation, its function in dopaminergic (TH+) neurons within the reward circuitry implicated in drug-seeking behavior [viz. the ventral tegmental area (VTA)], and its contribution to nicotine co-abuse are still poorly understood. We report that the γ-aminobutyric acidA receptor (GABAAR) α2 subunit activates the TLR4 signal in neurons, culminating in the activation (phosphorylation/nuclear translocation) of cyclic AMP response element binding (CREB) but not NF-kB transcription factors and the upregulation of corticotropin-releasing factor (CRF) and tyrosine hydroxylase (TH). The signal is activated through α2/TLR4 interaction, as evidenced by co-immunoprecipitation, and it is present in the VTA from drug-untreated alcohol-preferring P rats. VTA infusion of neurotropic herpes simplex virus (HSV) vectors for α2 (pHSVsiLA2) or TLR4 (pHSVsiTLR4) but not scrambled (pHSVsiNC) siRNA inhibits signal activation and both binge alcohol drinking and nicotine sensitization, suggesting that the α2-activated TLR4 signal contributes to the regulation of both alcohol and nicotine abuse.
Collapse
|
15
|
Balan I, Warnock KT, Puche A, Gondre-Lewis MC, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun 2018; 69:139-153. [PMID: 29146239 PMCID: PMC5857415 DOI: 10.1016/j.bbi.2017.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/25/2022] Open
Abstract
Cognitive impulsivity is a heritable trait believed to represent the behavior that defines the volition to initiate alcohol drinking. We have previously shown that a neuronal Toll-like receptor 4 (TLR4) signal located in the central amygdala (CeA) and ventral tegmental area (VTA) controls the initiation of binge drinking in alcohol-preferring P rats, and TLR4 expression is upregulated by alcohol-induced corticotropin-releasing factor (CRF) at these sites. However, the function of the TLR4 signal in the nucleus accumbens shell (NAc-shell), a site implicated in the control of reward, drug-seeking behavior and impulsivity and the contribution of other signal-associated genes, are still poorly understood. Here we report that P rats have an innately activated TLR4 signal in NAc-shell neurons that co-express the α2 GABAA receptor subunit and CRF prior to alcohol exposure. This signal is not present in non-alcohol drinking NP rats. The TLR4 signal is sustained by a CRF amplification loop, which includes TLR4-mediated CRF upregulation through PKA/CREB activation and CRF-mediated TLR4 upregulation through the CRF type 1 receptor (CRFR1) and the MAPK/ERK pathway. NAc-shell Infusion of a neurotropic, non-replicating herpes simplex virus vector for TLR4-specific small interfering RNA (pHSVsiTLR4) inhibits TLR4 expression and cognitive impulsivity, implicating the CRF-amplified TLR4 signal in impulsivity regulation.
Collapse
Affiliation(s)
- Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaitlin T Warnock
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Adam Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marjorie C Gondre-Lewis
- Department of Anatomy, Laboratory for Neurodevelopment, Howard University College of Medicine, Washington, DC, USA
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Pretorius E, Mbotwe S, Bester J, Robinson CJ, Kell DB. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. J R Soc Interface 2017; 13:rsif.2016.0539. [PMID: 27605168 PMCID: PMC5046953 DOI: 10.1098/rsif.2016.0539] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
It is well known that a variety of inflammatory diseases are accompanied by hypercoagulability, and a number of more-or-less longer-term signalling pathways have been shown to be involved. In recent work, we have suggested a direct and primary role for bacterial lipopolysaccharide (LPS) in this hypercoagulability, but it seems never to have been tested directly. Here, we show that the addition of tiny concentrations (0.2 ng l−1) of bacterial LPS to both whole blood and platelet-poor plasma of normal, healthy donors leads to marked changes in the nature of the fibrin fibres so formed, as observed by ultrastructural and fluorescence microscopy (the latter implying that the fibrin is actually in an amyloid β-sheet-rich form that on stoichiometric grounds must occur autocatalytically). They resemble those seen in a number of inflammatory (and also amyloid) diseases, consistent with an involvement of LPS in their aetiology. These changes are mirrored by changes in their viscoelastic properties as measured by thromboelastography. As the terminal stages of coagulation involve the polymerization of fibrinogen into fibrin fibres, we tested whether LPS would bind to fibrinogen directly. We demonstrated this using isothermal calorimetry. Finally, we show that these changes in fibre structure are mirrored when the experiment is done simply with purified fibrinogen and thrombin (±0.2 ng l−1 LPS). This ratio of concentrations of LPS : fibrinogen in vivo represents a molecular amplification by the LPS of more than 108-fold, a number that is probably unparalleled in biology. The observation of a direct effect of such highly substoichiometric amounts of LPS on both fibrinogen and coagulation can account for the role of very small numbers of dormant bacteria in disease progression in a great many inflammatory conditions, and opens up this process to further mechanistic analysis and possible treatment.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Sthembile Mbotwe
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Christopher J Robinson
- Faculty of Life Sciences, The University of Manchester, 131, Princess Street, Manchester M1 7DN, Lancs, UK The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess Street, Manchester M1 7DN, Lancs, UK Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, 131, Princess Street, Manchester M1 7DN, Lancs, UK
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, 131, Princess Street, Manchester M1 7DN, Lancs, UK The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess Street, Manchester M1 7DN, Lancs, UK Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, 131, Princess Street, Manchester M1 7DN, Lancs, UK
| |
Collapse
|
17
|
Virzì GM, Clementi A, Brocca A, Ronco C. Endotoxin Effects on Cardiac and Renal Functions and Cardiorenal Syndromes. Blood Purif 2017; 44:314-326. [PMID: 29161706 DOI: 10.1159/000480424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
Gram-negative sepsis is a major cause of morbidity and mortality in critical ill patients. Recent findings in molecular biology and in signaling pathways have enhanced our understanding of its pathogenesis and opened up opportunities of innovative therapeutic approaches. Endotoxin plays a pivotal role in the pathogenesis of multi-organ dysfunction in the setting of gram-negative sepsis. Indeed, heart and kidney impairments seem to be induced by the release of circulating pro-inflammatory and pro-apoptotic mediators triggered by endotoxin interaction with immune cells. These molecules are responsible for cellular apoptosis, autophagy, cell cycle arrest, and microRNAs activation. Therefore, the early identification of sepsis-associated acute kidney injury and heart dysfunction may improve the patient clinical outcome. In this report, we will consider the role of endotoxin in the pathogenesis of sepsis, its effects on both cardiac and renal functions, and the interactions between these 2 systems in the setting of cardiorenal syndromes (CRS), particularly in CRS type 5. Finally, we will discuss the possible role of extracorporeal therapies in reducing endotoxin levels.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Agrigento, Italy
| | | | | | | |
Collapse
|
18
|
Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med 2017; 102:188-202. [PMID: 27890642 DOI: 10.1016/j.freeradbiomed.2016.11.037] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/18/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
Abstract
Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrome and the development of hepatic steatosis as main hepatic histological finding. Increased accumulation of intrahepatic lipids was associated with altered gene expression related to lipid metabolism, as a result of deregulation of their major modulators. Quercetin supplementation decreased insulin resistance and NAFLD activity score, by reducing the intrahepatic lipid accumulation through its ability to modulate lipid metabolism gene expression, cytochrome P450 2E1 (CYP2E1)-dependent lipoperoxidation and related lipotoxicity. Microbiota composition was determined via 16S ribosomal RNA Illumina next-generation sequencing. Metagenomic studies revealed HFD-dependent differences at phylum, class and genus levels leading to dysbiosis, characterized by an increase in Firmicutes/Bacteroidetes ratio and in Gram-negative bacteria, and a dramatically increased detection of Helicobacter genus. Dysbiosis was accompanied by endotoxemia, intestinal barrier dysfunction and gut-liver axis alteration and subsequent inflammatory gene overexpression. Dysbiosis-mediated toll-like receptor 4 (TLR-4)-NF-κB signaling pathway activation was associated with inflammasome initiation response and reticulum stress pathway induction. Quercetin reverted gut microbiota imbalance and related endotoxemia-mediated TLR-4 pathway induction, with subsequent inhibition of inflammasome response and reticulum stress pathway activation, leading to the blockage of lipid metabolism gene expression deregulation. Our results support the suitability of quercetin as a therapeutic approach for obesity-associated NAFLD via its anti-inflammatory, antioxidant and prebiotic integrative response.
Collapse
Affiliation(s)
- David Porras
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.
| | - Esther Nistal
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.
| | | | | | - José Luis Olcoz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Department of Gastroenterology, Complejo Asistencial Universitario de León, León, Spain.
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain; Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain.
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Victoria García-Mediavilla
- Institute of Biomedicine (IBIOMED), University of León, León, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Sonia Sánchez-Campos
- Institute of Biomedicine (IBIOMED), University of León, León, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Garrett TA. Major roles for minor bacterial lipids identified by mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1319-1324. [PMID: 27760388 DOI: 10.1016/j.bbalip.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/31/2023]
Abstract
Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States.
| |
Collapse
|
20
|
TLR4 signaling in VTA dopaminergic neurons regulates impulsivity through tyrosine hydroxylase modulation. Transl Psychiatry 2016; 6:e815. [PMID: 27187237 PMCID: PMC5727490 DOI: 10.1038/tp.2016.72] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 01/09/2023] Open
Abstract
Alcohol dependence is a complex disorder that initiates with episodes of excessive alcohol drinking known as binge drinking, and has a 50-60% risk contribution from inherited susceptibility genes. Cognitive impulsivity is a heritable trait that may set the stage for transition to alcohol dependence but its role in the ethanol-seeking behavior and the involved genes are still poorly understood. We have previously shown that alcohol-preferring P rats have innately elevated levels of a neuronal Toll-like receptor 4 (TLR4) signal in the ventral tegmental area (VTA) that controls the initiation of excessive alcohol drinking. Here we report that TLR4 is localized in dopaminergic (TH+) neurons and it upregulates the expression of tyrosine hydroxylase (TH) through a cAMP-dependent protein kinase (PKA)/cyclic AMP response element binding protein (CREB) signal. P rats have higher impulsivity than wild-type (WT) rats and VTA infusion of a non-replicating Herpes simplex virus (HSV) vector for TLR4-specific small interfering RNA (siRNA; pHSVsiTLR4) inhibits both impulsivity and TLR4/TH expression. A scrambled siRNA vector does not affect gene expression or impulsivity. The data suggest that TLR4 signaling in VTA dopaminergic neurons controls impulsivity related to the regulation of TH expression, likely contributing to the initiation of alcohol drinking and its transition to alcohol dependence.
Collapse
|
21
|
Ciaramelli C, Calabrese V, Sestito SE, Pérez-Regidor L, Klett J, Oblak A, Jerala R, Piazza M, Martín-Santamaría S, Peri F. Glycolipid-based TLR4 Modulators and Fluorescent Probes: Rational Design, Synthesis, and Biological Properties. Chem Biol Drug Des 2016; 88:217-29. [PMID: 26896420 DOI: 10.1111/cbdd.12749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/08/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
The cationic glycolipid IAXO-102, a potent TLR4 antagonist targeting both MD-2 and CD14 co-receptors, has been used as scaffold to design new potential TLR4 modulators and fluorescent labels for the TLR4 receptor complex (membrane TLR4.MD-2 dimer and CD14). The primary amino group of IAXO-102, not involved in direct interaction with MD-2 and CD14 receptors, has been exploited to covalently attach a fluorescein (molecules 1 and 2) or to link two molecules of IAXO-102 through diamine and diammonium spacers, obtaining 'dimeric' molecules 3 and 4. The structure-based rational design of compounds 1-4 was guided by the optimization of MD-2 and CD14 binding. Compounds 1 and 2 inhibited TLR4 activation, in a concentration-dependent manner, and signaling in HEK-Blue TLR4 cells. The fluorescent labeling of murine macrophages by molecule 1 was inhibited by LPS and was also abrogated when cell surface proteins were digested by trypsin, thus suggesting an interaction of fluorescent probe 1 with membrane proteins of the TLR4 receptor system.
Collapse
Affiliation(s)
- Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Valentina Calabrese
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Stefania E Sestito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Lucia Pérez-Regidor
- Department of Chemistry and Biochemistry, Universidad CEU San Pablo, 28668-Boadilla del Monte, Madrid, Spain.,Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Klett
- Department of Chemistry and Biochemistry, Universidad CEU San Pablo, 28668-Boadilla del Monte, Madrid, Spain.,Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alja Oblak
- Department of Biotechnology, National Institute of Chemistry Ljubljana and EN-FIST Center of Excellence, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry Ljubljana and EN-FIST Center of Excellence, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Matteo Piazza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Sonsoles Martín-Santamaría
- Department of Chemistry and Biochemistry, Universidad CEU San Pablo, 28668-Boadilla del Monte, Madrid, Spain.,Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| |
Collapse
|
22
|
Sheikh S, Blaszykowski C, Romaschin A, Thompson M. Endotoxin detection in full blood plasma in a theranostic approach to combat sepsis. RSC Adv 2016. [DOI: 10.1039/c6ra02745h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A qualitative piezoelectric biosensor assay alternative for the detection of bacterial endotoxin is described to perform measurements in full human blood plasma in a real-time and label-free advanced fashion.
Collapse
Affiliation(s)
- Sonia Sheikh
- Department of Chemistry
- University of Toronto
- Toronto
- Canada M5S 3H6
| | | | | | - Michael Thompson
- Department of Chemistry
- University of Toronto
- Toronto
- Canada M5S 3H6
- Econous Systems Inc
| |
Collapse
|
23
|
Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2015; 244:211-5. [PMID: 26687466 DOI: 10.1016/j.atherosclerosis.2015.11.015] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLR) mediate infection-induced inflammation and sterile inflammation by endogenous molecules. Among the TLR family, TLR4 is the best understood. However, while its downstream signaling pathways have been well defined, not all ligands of TLR4 are currently known. Current evidence suggests that saturated fatty acids (SFA) act as non-microbial TLR4 agonists, and trigger its inflammatory response. Thus, our present review provides a new perspective on the potential mechanism by which SFAs could modulate TLR4-induced inflammatory responses: (1) SFAs can be recognized by CD14-TLR4-MD2 complex and trigger inflammatory pathways, similar to lipopolysaccharide (LPS). (2) SFAs lead to modification of gut microbiota with an overproduction of LPS after a high-fat intake, enhancing this natural TLR4 ligand. (3) In addition, this metabolic endotoxemia leads to an oxidative stress thereby producing atherogenic lipids - oxLDL and oxidized phospholipids - which trigger CD36-TLR4-TLR6 inflammatory response. (4) Also, the high SFA consumption increases the lipemia and the mmLDL and oxLDL formation through oxidative modifications of LDL. The mmLDL, unlike oxLDL, is involved in activation of the CD14-TLR4-MD2 inflammatory pathway. Those molecules can induce TLR4 inflammatory response by MyD88-dependent and/or MyD88-independent pathways that, in turn, promotes the expression of proinflammatory transcript factors such as factor nuclear kappa B (NF-κB), which plays a crucial role in the induction of inflammatory mediators (cytokines, chemokines, or costimulatory molecules) implicated in the development and progression of many chronic diseases.
Collapse
Affiliation(s)
- D M Rocha
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - A P Caldas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - L L Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - J Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - H H Hermsdorff
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
24
|
Luo YH, Wu ZW, Tsai HT, Lin SY, Lin P. Endotoxin Nanovesicles: Hydrophilic Gold Nanodots Control Supramolecular Lipopolysaccharide Assembly for Modulating Immunological Responses. NANO LETTERS 2015; 15:6446-6453. [PMID: 26339979 DOI: 10.1021/acs.nanolett.5b01809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we sought to control the assembly of an endotoxin known as the biologically supramolecular lipopolysaccharide (LPS, which consists of three portions: an O antigen, a core carbohydrate, and a lipid A molecule) in order to modulate immunological responses in a manner that has the potential for utilization in vaccine development. Changing the structures of LPS aggregates from lamellas to specific nonlamellas (i.e., cubosomes and hexosomes) can dramatically enhance the strength of LPS in causing inflammatory responses, leading to highly active responses. In order to control the formation of cubosome-free and hexosome-free nonlamellas, we designed a simple strategy based on the use of hydrophilic gold nanodots (AuNDs) to control LPS assembly to facilitate the formation of stable endotoxin nanovesicles, which are stable precursors of cubosomes and hexosomes with specific immunological effects. Structurally, the wall thicknesses of these nanovesicles are exactly twice the lengths of a single LPS molecule, indicating that the LPS molecules adopt a tail-to-tail arrangement (with the lipid A portions acting as the tail domain). The involvement of the hydrophilic AuNDs to laterally link polar domains of LPS can result in the progressive extension of an endotoxically active zone of lipid A assembly, leading to the eventual formation of large-size nanovesicles. Our results showed that endotoxin nanovesicles with such dense lipid A units can elicit the stronger inflammatory gene expressions, including interleukin 6 (IL-6), IL-1A, TNF-α, C-X-C chemokine ligand (CXCL) 1, 2, and 11, which have characteristics of T-helper 1 adjuvants. These findings provide evidence that the concept of manipulating the surface hydrophilicity of AuNDs to control LPS assembly in order to avoid the formation of highly active cubosomes and hexosomes, and thereby modulate immunological responses appropriately, could prove useful in vaccine development.
Collapse
Affiliation(s)
- Yueh-Hsia Luo
- National Institute of Environmental Health Sciences and ‡Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes , Zhunan, Taiwan
| | - Zong Wei Wu
- National Institute of Environmental Health Sciences and ‡Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes , Zhunan, Taiwan
| | - Hui-Ti Tsai
- National Institute of Environmental Health Sciences and ‡Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes , Zhunan, Taiwan
| | - Shu-Yi Lin
- National Institute of Environmental Health Sciences and ‡Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes , Zhunan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences and ‡Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes , Zhunan, Taiwan
| |
Collapse
|
25
|
Garlet GP. Lipopolysaccharide and its threatening zombie-like nature: unlive, harmful and tough (but not impossible) to eliminate. J Appl Oral Sci 2015; 23:356-7. [PMID: 26398506 PMCID: PMC4560494 DOI: 10.1590/1678-77572015ed004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Matsura T. Oxidized phosphatidylserine: production and bioactivities. Yonago Acta Med 2014; 57:119-127. [PMID: 25901098 PMCID: PMC4402403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Recent development of analytical methods for lipid hydroperoxides and preparation of highly pure lipid hydroperoxides have revealed the important new pathophysiological roles of oxidized phospholipids. Generation of reactive oxygen species and subsequent oxidative stress leads to random oxidation of membrane phospholipids. However, recent studies have reported that anionic phospholipid molecules such as phosphatidylserine (PS) and cardiolipin are preferentially oxidized during apoptosis, resulting in efficient apoptosis execution and apoptotic cell clearance by phagocytes. This review is exclusively focused on selective production of oxidized PS (oxPS) during apoptosis as well as the novel roles of oxPS under pathophysiological conditions.
Collapse
Affiliation(s)
- Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|