1
|
Zhao Z, Ruan S, Li Y, Qi T, Qi Y, Huang Y, Liu Z, Ruan Q, Ma Y. The Influence of Extra-Ribosomal Functions of Eukaryotic Ribosomal Proteins on Viral Infection. Biomolecules 2024; 14:1565. [PMID: 39766272 PMCID: PMC11674327 DOI: 10.3390/biom14121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The eukaryotic ribosome is a large ribonucleoprotein complex consisting of four types of ribosomal RNA (rRNA) and approximately 80 ribosomal proteins (RPs), forming the 40S and 60S subunits. In all living cells, its primary function is to produce proteins by converting messenger RNA (mRNA) into polypeptides. In addition to their canonical role in protein synthesis, RPs are crucial in controlling vital cellular processes such as cell cycle progression, cellular proliferation, differentiation, DNA damage repair, genome structure maintenance, and the cellular stress response. Viruses, as obligate intracellular parasites, depend completely on the machinery of the host cell for their replication and survival. During viral infection, RPs have been demonstrated to perform a variety of extra-ribosomal activities, which are especially important in viral disease processes. These functions cover a wide range of activities, ranging from controlling inflammatory responses and antiviral immunity to promoting viral replication and increasing viral pathogenicity. Deciphering the regulatory mechanisms used by RPs in response to viral infections has greatly expanded our understanding of their functions outside of the ribosome. Furthermore, these findings highlight the promising role of RPs as targets for the advancement of antiviral therapies and the development of novel antiviral approaches. This review comprehensively examines the many functions of RPs outside of the ribosome during viral infections and provides a foundation for future research on the host-virus interaction.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
| | - Shan Ruan
- Department of Gerontology, and Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Yang Li
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Te Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
2
|
Gervais O, Peñaloza C, Gratacap R, Papadopoulou A, Beltrán M, Henderson NC, Houston RD, Hassan MA, Robledo D. Understanding host response to infectious salmon anaemia virus in an Atlantic salmon cell line using single-cell RNA sequencing. BMC Genomics 2023; 24:161. [PMID: 36991327 DOI: 10.1186/s12864-023-09254-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Infectious Salmon Anaemia Virus (ISAV) is an Orthomixovirus that represents a large problem for salmonid aquaculture worldwide. Current prevention and treatment methods are only partially effective. Genetic selection and genome engineering have the potential to develop ISAV resistant salmon stocks. Both strategies can benefit from an improved understanding of the genomic regulation of ISAV pathogenesis. Here, we used single-cell RNA sequencing of an Atlantic salmon cell line to provide the first high dimensional insight into the transcriptional landscape that underpins host-virus interaction during early ISAV infection. RESULTS Salmon head kidney (SHK-1) cells were single-cell RNA sequenced at 24, 48 and 96 h post-ISAV challenge. At 24 h post infection, cells showed expression signatures consistent with viral entry, with genes such as PI3K, FAK or JNK being upregulated relative to uninfected cells. At 48 and 96 h, infected cells showed a clear anti-viral response, characterised by the expression of IFNA2 or IRF2. Uninfected bystander cells at 48 and 96 h also showed clear transcriptional differences, potentially suggesting paracrine signalling from infected cells. These bystander cells expressed pathways such as mRNA sensing, RNA degradation, ubiquitination or proteasome; and up-regulation of mitochondrial ribosome genes also seemed to play a role in the host response to the infection. Correlation between viral and host genes revealed novel genes potentially key for this fish-virus interaction. CONCLUSIONS This study has increased our understanding of the cellular response of Atlantic salmon during ISAV infection and revealed host-virus interactions at the cellular level. Our results highlight various potential key genes in this host-virus interaction, which can be manipulated in future functional studies to increase the resistance of Atlantic salmon to ISAV.
Collapse
Affiliation(s)
- Ophélie Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Remi Gratacap
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Athina Papadopoulou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Mariana Beltrán
- Centre for Inflammation Research, the Queen´s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Neil C Henderson
- Centre for Inflammation Research, the Queen´s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
- Benchmark Genetics, 1 Pioneer Building, Edinburgh Technopole, Penicuik, EH26 0GB, UK
| | - Musa A Hassan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
3
|
Bao J, He Y, Yang C, Lu N, Li A, Gao S, Hosyanto FF, Tang J, Si J, Tang X, Fu H, Xu L. Inhibition of mycobacteria proliferation in macrophages by low cisplatin concentration through phosphorylated p53-related apoptosis pathway. PLoS One 2023; 18:e0281170. [PMID: 36719870 PMCID: PMC9888694 DOI: 10.1371/journal.pone.0281170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Drug resistance is a prominent problem in the treatment of tuberculosis, so it is urgent to develop new anti- tuberculosis drugs. Here, we investigated the effects and mechanisms of cisplatin (DDP) on intracellular Mycobacterium smegmatis to tap the therapeutic potential of DDP in mycobacterial infection. RESULTS Macrophages infected with Mycobacterium smegmatis were treated with DDP alone or combined with isoniazid or rifampicin. The results showed that the bacterial count in macrophages decreased significantly after DDP (≤ 6 μg/mL) treatment. When isoniazid or rifampicin was combined with DDP, the number of intracellular mycobacteria was also significantly lower than that of isoniazid or rifampicin alone. Apoptosis of infected cells increased after 24 h of DDP treatment, as shown by flow cytometry and transmission electron microscopy detection. Transcriptome sequencing showed that there were 1161 upregulated and 645 downregulated differentially expressed genes (DEGs) between the control group and DDP treatment group. A Trp53-centered protein interaction network was found based on the top 100 significant DEGs through STRING and Cytoscape software. The expression of phosphorylated p53, Bax, JAK, p38 MAPK and PI3K increased after DDP treatment, as shown by Western blot analysis. Inhibitors of JAK, PI3K or p38 MAPK inhibited the increase in cell apoptosis and the reduction in the intracellular bacterial count induced by DDP. The p53 promoter Kevetrin hydrochloride scavenges intracellular mycobacteria. If combined with DDP, Kevetrin hydrochloride could increase the effect of DDP on the elimination of intracellular mycobacteria. In conclusion, DDP at low concentrations could activate the JAK, p38 MAPK and PI3K pathways in infected macrophages, promote the phosphorylation of p53 protein, and increase the ratio of Bax to Bcl-2, leading to cell apoptosis, thus eliminating intracellular bacteria and reducing the spread of mycobacteria. CONCLUSION DDP may be a new host-directed therapy for tuberculosis treatment, as well as the p53 promoter Kevetrin hydrochloride.
Collapse
Affiliation(s)
- Jiajia Bao
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Hospital-Acquired Infection Control Department, First People’s Hospital of Jintang County, Chengdu, China
| | - Yonglin He
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chun Yang
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Nan Lu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Anlong Li
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Sijia Gao
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | | | - Jialing Tang
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Junzhuo Si
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xia Tang
- Clinical laboratory, People’s Hospital of Rongchang District, Chongqing, China
| | - Huichao Fu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lei Xu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
4
|
Li L, Li P, Chen A, Li H, Liu Z, Yu L, Hou X. Quantitative proteomic analysis shows involvement of the p38 MAPK pathway in bovine parainfluenza virus type 3 replication. Virol J 2022; 19:116. [PMID: 35831876 PMCID: PMC9281021 DOI: 10.1186/s12985-022-01834-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bovine parainfluenza virus type 3 (BPIV3) infection often causes respiratory tissue damage and immunosuppression and further results in bovine respiratory disease complex (BRDC), one of the major diseases in dairy cattle, caused huge economical losses every year. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. Proteomics is a powerful tool for high-throughput identification of proteins, which has been widely used to understand how viruses interact with host cells. METHODS In the present study, we report a proteomic analysis to investigate the whole cellular protein alterations of MDBK cells infected with BPIV3. To investigate the infection process of BPIV3 and the immune response mechanism of MDBK cells, isobaric tags for relative and absolute quantitation analysis (iTRAQ) and Q-Exactive mass spectrometry-based proteomics were performed. The differentially expressed proteins (DEPs) involved in the BPIV3 invasion process in MDBK cells were identified, annotated, and quantitated. RESULTS A total of 116 proteins, which included 74 upregulated proteins and 42 downregulated proteins, were identified as DEPs between the BPIV3-infected and the mock-infected groups. These DEPs included corresponding proteins related to inflammatory response, immune response, and lipid metabolism. These results might provide some insights for understanding the pathogenesis of BPIV3. Fluorescent quantitative PCR and western blotting analysis showed results consistent with those of iTRAQ identification. Interestingly, the upregulated protein MKK3 was associated with the p38 MAPK signaling pathway. CONCLUSIONS The results of proteomics analysis indicated BPIV3 infection could activate the p38 MAPK pathway to promote virus replication.
Collapse
Affiliation(s)
- Liyang Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.,Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Pengfei Li
- Department of Nephrology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163319, China
| | - Ao Chen
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hanbing Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zhe Liu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liyun Yu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xilin Hou
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
5
|
Zhu Z, Li W, Zhang X, Wang C, Gao L, Yang F, Cao W, Li K, Tian H, Liu X, Zhang K, Zheng H. Foot-and-Mouth Disease Virus Capsid Protein VP1 Interacts with Host Ribosomal Protein SA To Maintain Activation of the MAPK Signal Pathway and Promote Virus Replication. J Virol 2020; 94:e01350-19. [PMID: 31694957 PMCID: PMC7000977 DOI: 10.1128/jvi.01350-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, a highly contagious, economically important viral disease. The structural protein VP1 plays significant roles during FMDV infection. Here, we identified that VP1 interacted with host ribosomal protein SA (RPSA). RPSA is a viral receptor for dengue virus and classical swine fever virus infections. However, the incubation of susceptible cells using the anti-RPSA antibodies did not block the infection of FMDV. Overexpression of porcine RPSA in the insusceptible cells could not trigger FMDV infection, suggesting that RPSA was not responsible for FMDV entry and infection. On the contrary, we found that overexpression of RPSA suppressed FMDV replication, and knockdown of RPSA enhanced FMDV replication. We further determined that FMDV infection activated the mitogen-activated protein kinase (MAPK) pathway and demonstrated that MAPK pathway activation was critically important for FMDV replication. RPSA negatively regulated MAPK pathway activation during FMDV infection and displayed an antiviral function. FMDV VP1 interacted with RPSA to abrogate the RPSA-mediated suppressive role in MAPK pathway activation. Together, our study indicated that MAPK pathway activation was required for FMDV replication and that host RPSA played a negatively regulatory role on MAPK pathway activation to suppress FMDV replication. FMDV VP1 bound to RPSA to promote viral replication by repressing RPSA-mediated function and maintaining the activation of MAPK signal pathway.IMPORTANCE Identification of virus-cell interactions is essential for making strategies to limit virus replication and refine the models of virus replication. This study demonstrated that FMDV utilized the MAPK pathway for viral replication. The host RPSA protein inhibited FMDV replication by suppressing the activation of the MAPK pathway during FMDV infection. FMDV VP1 bound to RPSA to repress the RPSA-mediated regulatory effect on MAPK pathway activation. This study revealed an important implication of the MAPK pathway for FMDV infection and identified a novel mechanism by which FMDV VP1 has evolved to interact with RPSA and maintain the activation of the MAPK pathway, elucidating new information regarding the signal reprogramming of host cells by FMDV.
Collapse
Affiliation(s)
- Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weiwei Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lili Gao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100596. [PMID: 31174158 DOI: 10.1016/j.cbd.2019.100596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023]
Abstract
Flavobacterium psychrophilum is the etiologic agent of rainbow trout fry syndrome (RTFS). This pathogen infects a wide variety of salmonid species during freshwater stages, causing significant losses in the aquaculture industry. Rainbow trout (Oncorhynchus mykiss) infected with F. psychrophilum, presents as the main external clinical sign ulcerative lesions and necrotic myositis in skeletal muscle. We previously reported the in vitro cytotoxic activity of F. psychrophilum on rainbow trout myoblast, however little is known about the molecular mechanisms underlying the in vivo pathogenesis in skeletal muscle. In this study, we examined the transcriptomic profiles of skeletal muscle tissue of rainbow trout intraperitoneally challenged with low infection dose of F. psychrophilum. Using high-throughput RNA-seq, we found that 233 transcripts were up-regulated, mostly associated to ubiquitin mediated proteolysis and apoptosis. Conversely, 189 transcripts were down-regulated, associated to skeletal muscle contraction. This molecular signature was consistent with creatine kinase activity in plasma and oxidative damage in skeletal muscle. Moreover, the increased caspase activity suggests as a whole skeletal muscle atrophy induced by F. psychrophilum. This study offers an integrative analysis of the skeletal muscle response to F. psychrophilum infection and reveals unknown aspects of its pathogenesis in rainbow trout.
Collapse
|
7
|
Fredericksen F, Villalba M, Maldonado N, Payne G, Torres F, Olavarría VH. Sumoylation of nucleoprotein (NP) mediated by activation of NADPH oxidase complex is a consequence of oxidative cellular stress during infection by Infectious salmon anemia (ISA) virus necessary to viral progeny. Virology 2019; 531:269-279. [PMID: 30974383 DOI: 10.1016/j.virol.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023]
Abstract
The study evaluated the effects of nucleoprotein viral and the infectious virus in SHK-1 cells. The results show a strong respiratory burst activation and the induction of p47phox, SOD, GLURED, and apoptotic genes. Additionally, the cells alter the profile of SUMOylated proteins by the effect of transfection and infection experiments. In silico analyses show a set of structural motifs in NP susceptible of post-translational modification by the SUMO protein. Interestingly, the inhibition of the NADPH oxidase complex blocked the production of reactive oxygen species and the high level of cellular ROS due to the nucleoprotein and the ISAv. At the same time, the blocking of the p38MAPK signaling pathway and the use of Aristotelia chilensis, decreased viral progeny production. These results suggest that the NP triggers a strong production of ROS and modifying the post-translational profile mediated by SUMO-2/3, a phenomenon that favors the production of new virions.
Collapse
Affiliation(s)
- Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Nicolas Maldonado
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gardenia Payne
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Francisco Torres
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
8
|
Zhao S, Wang Y, Zhang X, Zheng L, Zhu B, Yao S, Yang L, Du J. Melatonin Protects Against Hypoxia/Reoxygenation-Induced Dysfunction of Human Umbilical Vein Endothelial Cells Through Inhibiting Reactive Oxygen Species Generation. ACTA CARDIOLOGICA SINICA 2018; 34:424-431. [PMID: 30271093 PMCID: PMC6160513 DOI: 10.6515/acs.201809_34(5).20180708a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxia/reoxygenation (H/R) in human umbilical vein endothelial cells (HUVECs) induces oxidative stress and eventually leads to vascular injury. OBJECTIVE The aim of this study was to examine the effect of melatonin on HUVECs injured by H/R and explore the underlying mechanisms. MATERIALS AND METHODS A model of HUVECs under hypoxia/reoxygenation was established. Cell migration and adhesive ability was measured by wound healing and adhesion assays. Cell proliferation was measured by EdU assay. Production of reactive oxygen species (ROS) was evaluated by CM-H2DCFDA staining. Actin cytoskeleton rearrangement was examined by immunofluorescence. Western blotting analysis were used to analyze P38 and HSP27 phosphorylation levels. RESULTS H/R inhibited HUVEC proliferation, cell migratory and adhesive capacities, whereas melatonin (1~100 μM) inhibited these effects in a dose-dependent manner. Melatonin alone did not affect HUVEC viability, however, it inhibited the increase in ROS production and cytoskeleton disruption elicited by H/R, and it dose-dependently prevented H/R-induced upregulation of P38 and HSP27 phosphorylation. In addition, the ROS scavenger N-acetyl-L-cysteine markedly inhibited increased phosphorylation levels of P38 and HSP27 under H/R. CONCLUSIONS Melatonin may have a potential clinical effect in trials of H/R-induced vascular injury through its antioxidant property.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | | | | | | | | | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| |
Collapse
|
9
|
Zou S, Wang C, Cui Z, Guo P, Meng Q, Shi X, Gao Y, Yang G, Han Z. β-Elemene induces apoptosis of human rheumatoid arthritis fibroblast-like synoviocytes via reactive oxygen species-dependent activation of p38 mitogen-activated protein kinase. Pharmacol Rep 2016; 68:7-11. [DOI: 10.1016/j.pharep.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 12/01/2022]
|
10
|
Zhou A, Li S, Khan FA, Zhang S. Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction. Virulence 2015; 7:98-109. [PMID: 26670824 DOI: 10.1080/21505594.2015.1131381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Autophagy and apoptosis play significant roles in PRRSV infection and replication. However, the interaction between these 2 processes in PRRSV replication is still far from been completely understood. In our studies, the exposure of MARC-145 cells to PRRSV confirmed the activation of autophagy and subsequent induction of apoptosis. The inhibition of autophagy by 3-methyladenine (3-MA) caused a significant increase in PRRSV-induced apoptosis, showing a potential connection between both mechanisms. Moreover, we observed an increase in Bad expression (a pro-apoptotic protein) and Beclin1 (an autophagy regulator) in virus-infected cells up to 36h. Co-immunoprecipitation assays showed the formation of Bad and Beclin1 complex in PRRSV infected cells. Accordingly, Bad co-localized with Beclin1 in MARC-145 infected cells. Knockdown of Beclin1 significantly decreased PRRSV replication and PRRSV-induced autophagy, while Bad silencing resulted in increased autophagy and enhanced viral replication. Furthermore, PRRSV infection phosphorylated Bad (Ser112) to promote cellular survival. These results demonstrate that autophagy can favor PRRSV replication by postponing apoptosis through the formation of a Bad-Beclin1 complex.
Collapse
Affiliation(s)
- Ao Zhou
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| | - Shuaifeng Li
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| | - Faheem Ahmed Khan
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| | - Shujun Zhang
- a Key Lab of Agricultural Animal Genetics; Breeding and Reproduction of Ministry of Education; Huazhong Agricultural University ; Wuhan , China
| |
Collapse
|
11
|
Reshi L, Wu JL, Wang HV, Hong JR. Aquatic viruses induce host cell death pathways and its application. Virus Res 2015; 211:133-44. [PMID: 26494167 DOI: 10.1016/j.virusres.2015.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
Abstract
Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases.
Collapse
Affiliation(s)
- Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, College of Bioscience and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City 701, Taiwan, ROC; Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City 701, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Hao-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, College of Bioscience and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City 701, Taiwan, ROC.
| |
Collapse
|
12
|
Dong C, He M, Ren R, Xie Y, Yuan D, Dang B, Li W, Shao C. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with γ-rays or carbon ions. Life Sci 2015; 127:19-25. [PMID: 25748424 DOI: 10.1016/j.lfs.2015.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/20/2023]
Abstract
AIMS The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated. MAIN METHODS Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.CIR (HMy) lymphocytes for different periods. The activation of MAPK proteins and the generation of intracellular nitric oxide (NO) and reactive oxygen species (ROS) in the irradiated U937 cells were measured. Micronuclei (MN) formation in the HMy cells was applied to evaluate the bystander damage. Some U937 cells were pretreated with different MAPK inhibitors before irradiation. KEY FINDINGS Additional MN formation was induced in the HMy cells after co-culturing with irradiated U937 cells, and the yield of this bystander MN formation was dependent on the co-culture period with γ-ray irradiation but remained high after 1h of co-culture with carbon irradiation. Further investigations disclosed that the time response of the RIBEs had a relationship with LET, where ERK played a different role from JNK and p38 in regulating RIBEs by regulating the generation of the bystander signaling factors NO and ROS. SIGNIFICANCE The finding that the RIBE of high-LET radiation could persist for a much longer period than that of γ-rays implies that particle radiation during space flight could have a high risk of long-term harmful effects. An appropriate intervention targeting the MAPK pathway may have significant implications in reducing this risk.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Ruiping Ren
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|