1
|
Yoshida M, Hanazono Y, Numoto N, Nagao S, Yabuno S, Kitagawa Y, Sekiguchi H, Ito N, Azuma T, Oda M. Affinity-matured antibody with a disulfide bond in H-CDR3 loop. Arch Biochem Biophys 2024; 758:110068. [PMID: 38909835 DOI: 10.1016/j.abb.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Affinity maturation increases antigen-binding affinity and specificity of antibodies by somatic hypermutation. Various monoclonal antibodies against (4-hydroxy-3-nitrophenyl)acetyl (NP) were obtained during affinity maturation. Among them, highly matured anti-NP antibodies, such as E11 and E3, possess Cys96H and Cys100H in the complementarity-determining region 3 of the heavy chain, which would form a disulfide bond. In this study, we evaluated the effects of disulfide bonds on antigen binding by generating single-chain Fv (scFv) antibodies of E11 and its mutants, E11_C96KH/C100EH and E11_C96KH/C100QH, and determined their antigen-binding thermodynamics and kinetics. The binding affinities of the Cys mutants were lower than that of E11 scFv, indicating that the disulfide bond contributed to antigen binding, especially for stable complex formation. This was also supported by the decreased affinity of E11 scFv in the presence of a reducing agent. The crystal structures of NP-free and NP-bound E11 scFvs were determined at high resolution, showing the existence of a disulfide bond between Cys96H and Cys100H, and the antigen recognition mechanism, which could be compared with those of other anti-NP antibodies, such as germline-type N1G9 and matured-type C6, as reported previously. These structures could explain the molecular basis of changes in antigen-binding affinity and thermal stability in the absence or presence of antigens. Small-angle X-ray scattering further showed a local conformational change in E11 scFv upon antigen binding in solution.
Collapse
Affiliation(s)
- Mutsumi Yoshida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan
| | - Yuya Hanazono
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoshi Nagao
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Saaya Yabuno
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan
| | - Yumi Kitagawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takachika Azuma
- Antibody Technology Research Center, Inc., 2361-1Yamazaki, Noda, Chiba, 278-0022, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522, Japan.
| |
Collapse
|
2
|
Oda M. Structural, functional, and physiological properties of anti-(4-hydroxy-3-nitrophenyl)acetyl antibodies during the course of affinity maturation. Biophys Rev 2022; 14:1521-1526. [PMID: 36659986 PMCID: PMC9842813 DOI: 10.1007/s12551-022-01008-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 01/22/2023] Open
Abstract
Structural and functional analyses of antibodies in the affinity maturation pathway can help us understand the molecular mechanisms of protein recognition. Using one of the haptens, (4-hydroxy-3-nitrophenyl)acetyl (NP), various monoclonal antibodies have been obtained, either at the early or late stage of immunization. The variable regions of monoclonal antibodies and their site-directed mutants can also be obtained as single-chain Fv (scFv) antibodies. The change in antigen-binding affinity and avidity of matured-type antibodies from germline-type antibodies could be evaluated based on binding kinetics and thermodynamics, proposing the antigen recognition mode. Crystal structures of a germline-type antibody, N1G9, and a matured-type antibody, C6, in complex with NP were determined, revealing different antigen-binding mode at atomic resolution. Notably, the Tyr to Gly mutation at the 95th residue of the heavy chain is critical for changing the configuration of complementarity determining region 3, which is involved in antigen binding. Furthermore, thermal stability analyses of scFv antibodies have revealed trade-off between antigen-binding affinity and thermal stability in the antigen-unbound state. To increase affinity, the stability of the variable region may be decreased, possibly due to protein architecture. The high stability of germline-type antibodies and the low stability of matured-type antibodies, which increase upon antigen binding, can be explained by the stability of antibodies required at the respective stages of immunization.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto, 606-8522 Japan
| |
Collapse
|
3
|
Hayashi T, Kamatari YO, Oda M. Evaluation of multi-specificity of antibody G2 using its single-chain Fv and its covalently linked antigen peptides. Biophys Chem 2022; 290:106893. [PMID: 36152482 DOI: 10.1016/j.bpc.2022.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
The antibody G2 specifically binds to four peptides with different amino acid sequences: Pep18mer, Pep8, Pep395, and PepH4P6. To elucidate the multi-specificity of G2, we generated a G2 single-chain Fv (scFv) antibody and analyzed its binding thermodynamics and kinetics to antigen peptides. Our results clearly showed that the recognition of PepH4P6 was similar to that of Pep18mer, to which G2 could obtain binding ability through the deletion of Pro95 at light chain on the affinity maturation process. The covalent linking of peptides could increase the thermal stability of G2 scFv due to intramolecular antigen binding. In the effects of respective peptides, the increased thermal stability of G2 scFv linked to Pep8 was significant, possibly due to the rapid dissociation. Binding experiments of G2 scFv linked to peptides to other peptides showed decreased association rates relative to those of antigen-free G2 scFv while the dissociation rates were almost unchanged.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
4
|
A Trade-off Between Thermostability and Binding Affinity of Anti-(4-hydroxy-3-nitrophenyl)Acetyl Antibodies During the Course of Affinity Maturation. Protein J 2022; 41:293-303. [DOI: 10.1007/s10930-022-10053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
5
|
Yamaoka T, Kamatari YO, Maruno T, Kobayashi Y, Oda M. Structural and functional evaluation of single-chain Fv antibody HyC1 recognizing the residual native structure of hen egg lysozyme. Biosci Biotechnol Biochem 2020; 84:358-364. [DOI: 10.1080/09168451.2019.1683441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
Evaluation of the molecular mechanisms by which an antibody recognizes a specific antigen could help in better understanding of the protein recognition mechanisms. We previously showed that anti-hen egg lysozyme (HEL) monoclonal antibody, HyC1, recognized the structural and hydrodynamic change in HEL. Here, we generated HyC1 single-chain Fv (scFv), and characterized it using different structural and biophysical methods. Similar to HyC1 monoclonal antibody, HyC1 scFv could recognize native HEL from carboxymethylated Cys6 and Cys127 HEL (CM6,127-HEL). Comparison of the binding thermodynamics of HyC1 scFv between HEL and CM6,127-HEL showed that the binding enthalpy change was different, while the binding entropy was remained unchanged. The results indicated that the fluctuation of the residual native structure in both HEL and CM6,127-HEL was similar. The NMR experiments for 15N-labeled HyC1 scFv indicated that the flexibility of HyC1 scFv decreased upon the binding to HEL.
Collapse
Affiliation(s)
- Takanori Yamaoka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | | | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
6
|
Nishiguchi A, Numoto N, Ito N, Azuma T, Oda M. Three-dimensional structure of a high affinity anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Mol Immunol 2019; 114:545-552. [DOI: 10.1016/j.molimm.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
7
|
Tashiro Y, Murakami A, Hara Y, Shimizu T, Kubo M, Goitsuka R, Kishimoto H, Azuma T. High-affinity IgM + memory B cells are defective in differentiation into IgM antibody-secreting cells by re-stimulation with a T cell-dependent antigen. Sci Rep 2018; 8:14559. [PMID: 30266961 PMCID: PMC6162211 DOI: 10.1038/s41598-018-32926-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
IgM antibodies (Abs) are thought to play a major role in humoral immunity but only at the early stage of the primary immune response. However, two subsets of IgM+ memory B cells (MBCs), one with high affinity gained by means of multiple somatic hypermutation (SHM) and the other with low affinity and no SHMs, are generated through the germinal center (GC)-dependent and GC-independent (non-GC) pathway, respectively, after immunization with (4-hydroxy-3-nitrophenyl)acetyl (NP)-chicken γ-globulin. Surprisingly, an analysis of antibody-secreting cells reveals that a large amount of anti-NP IgM Ab with few SHMs is secreted during the recall response, indicating that only non-GC MBCs have terminal differentiation potential. Since secondary IgM Abs are capable of binding to dinitrophenyl ligands, they likely provide broad cross-reactivity in defense against microbial infection.
Collapse
Affiliation(s)
- Yasuyuki Tashiro
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan. .,Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
| | - Akikazu Murakami
- Department of Parasitology & Immunopathoetiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yasushi Hara
- Shared equipment room, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan.,Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hidehiro Kishimoto
- Department of Parasitology & Immunopathoetiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takachika Azuma
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan.,Antibody Technology Research Center, Co. Ltd., Noda, Chiba, Japan
| |
Collapse
|
8
|
Usui D, Inaba S, Kamatari YO, Ishiguro N, Oda M. Light-chain residue 95 is critical for antigen binding and multispecificity of monoclonal antibody G2. Biochem Biophys Res Commun 2017; 490:1205-1209. [DOI: 10.1016/j.bbrc.2017.06.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 11/28/2022]
|
9
|
Sato Y, Inaba S, Fukada H, Azuma T, Oda M. Pronounced effect of hapten binding on thermal stability of an anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Mol Immunol 2017; 85:130-136. [DOI: 10.1016/j.molimm.2017.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 10/20/2022]
|
10
|
Sato Y, Tanaka Y, Inaba S, Sekiguchi H, Maruno T, Sasaki YC, Fukada H, Kobayashi Y, Azuma T, Oda M. Structural dynamics of a single-chain Fv antibody against (4-hydroxy-3-nitrophenyl)acetyl. Int J Biol Macromol 2016; 91:151-7. [DOI: 10.1016/j.ijbiomac.2016.05.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|