1
|
Yu Q, Tang R, Mo W, Zhao L, Li L. Baicalein Enhances Radiosensitivity in Colorectal Cancer via JAK2/STAT3 Pathway Inhibition. Chem Biol Drug Des 2024; 104:e14611. [PMID: 39152534 DOI: 10.1111/cbdd.14611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Radiation resistance is a crucial factor influencing therapeutic outcomes in colorectal cancer (CRC). Baicalein (BE), primarily derived from Scutellaria baicalensis, has demonstrated anti-CRC properties. However, the impact of BE on the radiosensitivity of CRC remains unclear. This study aimed to evaluate the radiosensitization effects of BE and elucidate its mechanism in CRC radiotherapy. We established an in vitro radioresistant cell model (CT26-R) using parental CRC cells (CT26) subjected to ionizing radiation (IR). CT26-R cells were pretreated with or without BE, followed by transfection with pcDNA-NC and pcDNA-JAK2. The proliferation of CT26-R cells treated with BE and IR was assessed using a colony formation assay. A CRC animal model was developed in BALB/c mice via CT26-R cell transplantation. The radiosensitizing effect of BE on CRC was evaluated in vivo. TUNEL assay was conducted to detect apoptosis in tumor tissue. The expression levels of p-STAT3, JAK2, PD-L1, and SOCS3 in vitro and in vivo were measured by western blotting. Our results demonstrated that BE significantly increased radiosensitivity in vitro and in vivo and enhanced apoptosis in tumor tissues. Additionally, BE significantly downregulated the expression of p-STAT3, JAK2, and PD-L1, and significantly upregulated SOCS3 expression. These in vivo effects were reversed by pcDNA-JAK2. In summary, our data suggest that BE enhances CRC radiosensitivity by inhibiting the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Qingqing Yu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Rongjun Tang
- Hyperthermia Center, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Weixing Mo
- Department of Radiology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linfang Zhao
- Department of Ultrasonography, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lingdi Li
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
3
|
Jiang H, Yang J, Li T, Wang X, Fan Z, Ye Q, Du Y. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target. Front Pharmacol 2024; 15:1336102. [PMID: 38495094 PMCID: PMC10940489 DOI: 10.3389/fphar.2024.1336102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiac fibrosis is a serious health problem because it is a common pathological change in almost all forms of cardiovascular diseases. Cardiac fibrosis is characterized by the transdifferentiation of cardiac fibroblasts (CFs) into cardiac myofibroblasts and the excessive deposition of extracellular matrix (ECM) components produced by activated myofibroblasts, which leads to fibrotic scar formation and subsequent cardiac dysfunction. However, there are currently few effective therapeutic strategies protecting against fibrogenesis. This lack is largely because the molecular mechanisms of cardiac fibrosis remain unclear despite extensive research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascade is an extensively present intracellular signal transduction pathway and can regulate a wide range of biological processes, including cell proliferation, migration, differentiation, apoptosis, and immune response. Various upstream mediators such as cytokines, growth factors and hormones can initiate signal transmission via this pathway and play corresponding regulatory roles. STAT3 is a crucial player of the JAK/STAT pathway and its activation is related to inflammation, malignant tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in the spotlight for its role in the occurrence and development of cardiac fibrosis and its activation can promote the proliferation and activation of CFs and the production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript, we discuss the structure, transactivation and regulation of the JAK/STAT3 signaling pathway and review recent progress on the role of this pathway in cardiac fibrosis. Moreover, we summarize the current challenges and opportunities of targeting the JAK/STAT3 signaling for the treatment of fibrosis. In summary, the information presented in this article is critical for comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and will also contribute to future research aimed at the development of effective anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junjie Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanfei Du
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Wang Q, Liu W, Zhou H, Lai W, Hu C, Dai Y, Li G, Zhang R, Zhao Y. Tozasertib activates anti-tumor immunity through decreasing regulatory T cells in melanoma. Neoplasia 2024; 48:100966. [PMID: 38237304 PMCID: PMC10828585 DOI: 10.1016/j.neo.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Although immune checkpoint therapy has significantly improved the prognosis of patients with melanoma, urgent attention still needs to be paid to the low patient response rates and the challenges of precisely identifying patients before treatment. Therefore, it is crucial to investigate novel immunosuppressive mechanisms and targets in the tumor microenvironment in order to reverse tumor immune escape. In this study, we found that the cell cycle checkpoint Aurora kinase B (AURKB) suppressed the anti-tumor immune response, and its inhibitor, Tozasertib, effectively activated T lymphocyte cytokine release in vitro and anti-tumor immunity in vivo. Tozasertib significantly inhibited melanoma xenograft tumor growth by decreasing the number of inhibitory CD4+ Treg cells in the tumors, which, in turn, activated CD8+ T cells. Single-cell analysis revealed that AURKB suppressed anti-tumor immunity by increasing MIF-CD74/CXCR4 signaling between tumor cells and lymphocytes. Our study suggests that AURKB is a newly identified anti-tumor immunity suppressor, whose inhibitors may be developed as novel anti-tumor immunity drugs and may have synergistic anti-melanoma effects with immune checkpoint therapies.
Collapse
Affiliation(s)
- Qiaoling Wang
- Department of Pharmacy, University Town Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yue Dai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Yu Zhao
- Department of Pharmacy, University Town Hospital Affiliated of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Liu Y, Tang X. Identification of key biomarkers in RF-negative polyarticular and oligoarticular juvenile idiopathic arthritis by bioinformatic analysis. Pediatr Rheumatol Online J 2023; 21:143. [PMID: 38001449 PMCID: PMC10675924 DOI: 10.1186/s12969-023-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Juvenile idiopathic arthritis (JIA) is a broad term used to describe arthritis of unknown origin. JIA commonly persists into adulthood, often causing substantial morbidity such as restricted joint function, which can lead to challenges in employment and independence. This study aims to identify diagnostic biomarkers and investigate the role of immune cells in the pathogenesis of rheumatoid factor-negative polyarticular juvenile idiopathic arthritis (RF-negative pJIA) and oligoarticular juvenile idiopathic arthritis (oJIA). METHODS We retrieved a JIA dataset from the GEO database and conducted an analysis of differentially expressed genes (DEGs). Subsequently, functional enrichment analysis was performed on the DEGs. Weighted gene co-expression network analysis (WGCNA) was utilized to identify key modules. Additionally, we constructed a protein‒protein interaction network to identify hub genes that serve as signature genes. Furthermore, we employed CIBERSORT to classify immune cell infiltration. RESULTS From the GSE20307 dataset, we identified a total of 1438 DEGs in RF-negative pJIA and 688 DEGs in oJIA. WGCNA clustered the data into 6 modules in pJIA and 4 modules in oJIA. Notably, the ME5 and ME2 modules exhibited significant associations with pJIA and oJIA, respectively. In both pJIA and oJIA, we identified six hub genes, four of which demonstrated high diagnostic sensitivity and specificity in pJIA, while five showed high diagnostic sensitivity and specificity in oJIA. CIBERSORT analysis suggested the potential involvement of these signature genes in immune cell infiltration. CONCLUSION In this study, we identified JUN, CXCL8, SOCS3, and KRAS as biomarkers for RF-negative pJIA and JUN, CXCL8, SOCS3, PTGS2, and NFKBIA as biomarkers for oJIA. Furthermore, our findings suggest that Tfh cells may play a role in the early onset of both RF-negative pJIA and oJIA.
Collapse
Affiliation(s)
- Yun Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
6
|
Basheer F, Sertori R, Liongue C, Ward AC. Zebrafish: A Relevant Genetic Model for Human Primary Immunodeficiency (PID) Disorders? Int J Mol Sci 2023; 24:ijms24076468. [PMID: 37047441 PMCID: PMC10095346 DOI: 10.3390/ijms24076468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Primary immunodeficiency (PID) disorders, also commonly referred to as inborn errors of immunity, are a heterogenous group of human genetic diseases characterized by defects in immune cell development and/or function. Since these disorders are generally uncommon and occur on a variable background profile of potential genetic and environmental modifiers, animal models are critical to provide mechanistic insights as well as to create platforms to underpin therapeutic development. This review aims to review the relevance of zebrafish as an alternative genetic model for PIDs. It provides an overview of the conservation of the zebrafish immune system and details specific examples of zebrafish models for a multitude of specific human PIDs across a range of distinct categories, including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), multi-system immunodeficiency, autoinflammatory disorders, neutropenia and defects in leucocyte mobility and respiratory burst. It also describes some of the diverse applications of these models, particularly in the fields of microbiology, immunology, regenerative biology and oncology.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
JAK-STAT Signaling Pathway in Non-Infectious Uveitis. Biochem Pharmacol 2022; 204:115236. [PMID: 36041544 DOI: 10.1016/j.bcp.2022.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Non-infectious uveitis (NIU) refers to various intraocular inflammatory disorders responsible for severe visual loss. Cytokines participate in the regulation of ocular homeostasis and NIU pathological processes. Cytokine receptors transmit signals by activating Janus kinase (JAK) and signal transducer and activator of transcription (STAT) proteins. Increasing evidence from human NIU and experimental models reveals the involvement of the JAK-STAT signaling pathway in NIU pathogenesis. Several small-molecule drugs that potentially inhibit multiple cytokine-dependent pathways are under investigation for treating autoimmune diseases, implicating possible applications for NIU treatment. This review summarizes the current understanding of the diverse roles of the JAK-STAT signaling pathway in ocular homeostasis and NIU pathology, providing a rationale for targeting JAKs and STATs for NIU treatment. Moreover, available evidence for the safety and efficacy of JAK inhibitors for refractory uveitis and potential approaches for treatment optimization are discussed.
Collapse
|
8
|
Qin W, Luo H, Yang L, Hu D, Jiang SP, Peng DY, Hu JM, Liu SJ. Rubia cordifolia L. ameliorates DSS-induced ulcerative colitis in mice through dual inhibition of NLRP3 inflammasome and IL-6/JAK2/STAT3 pathways. Heliyon 2022; 8:e10314. [PMID: 36082330 PMCID: PMC9445285 DOI: 10.1016/j.heliyon.2022.e10314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 10/25/2022] Open
|
9
|
Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals (Basel) 2022; 15:ph15080936. [PMID: 36015084 PMCID: PMC9413112 DOI: 10.3390/ph15080936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Systemic sclerosis and systemic lupus erythematosus represent two distinct autoimmune diseases belonging to the group of connective tissue disorders. Despite the great progress in the basic science, this progress has not been translated to the development of novel therapeutic approaches that can radically change the face of these diseases. The discovery of JAK kinases, which are tyrosine kinases coupled with cytokine receptors, may open a new chapter in the treatment of so far untreatable diseases. Small synthetic compounds that can block Janus kinases and interact directly with cytokine signalling may provide therapeutic potential in these diseases. In this review, we discuss the therapeutic potential of Jak kinases in light of the cytokine network that JAK kinases are able to interact with. We also provide the theoretical background for the rationale of blocking cytokines with specific JAK inhibitors.
Collapse
|
10
|
Taznin T, Perera K, Gibert Y, Ward AC, Liongue C. Cytokine Receptor-Like Factor 3 (CRLF3) Contributes to Early Zebrafish Hematopoiesis. Front Immunol 2022; 13:910428. [PMID: 35795682 PMCID: PMC9251315 DOI: 10.3389/fimmu.2022.910428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is an ancient protein conserved across metazoans that contains an archetypal cytokine receptor homology domain (CHD). This domain is found in cytokine receptors present in bilateria, including higher vertebrates, that play key roles in a variety of developmental and homeostatic processes, particularly relating to blood and immune cells. However, understanding of CRLF3 itself remains very limited. This study aimed to investigate this evolutionarily significant protein by studying its embryonic expression and function in early development, particularly of blood and immune cells, using zebrafish as a model. Expression of crlf3 was identified in mesoderm-derived tissues in early zebrafish embryos, including the somitic mesoderm and both anterior and posterior lateral plate mesoderm. Later expression was observed in the thymus, brain, retina and exocrine pancreas. Zebrafish crlf3 mutants generated by genome editing technology exhibited a significant reduction in primitive hematopoiesis and early definitive hematopoiesis, with decreased early progenitors impacting on multiple lineages. No other obvious phenotypes were observed in the crlf3 mutants.
Collapse
Affiliation(s)
- Tarannum Taznin
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | - Yann Gibert
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- *Correspondence: Clifford Liongue,
| |
Collapse
|
11
|
Warmack RA, Pang EZ, Peluso E, Lowenson JD, Ong JY, Torres JZ, Clarke SG. Human Protein-l-isoaspartate O-Methyltransferase Domain-Containing Protein 1 (PCMTD1) Associates with Cullin-RING Ligase Proteins. Biochemistry 2022; 61:879-894. [PMID: 35486881 PMCID: PMC9875861 DOI: 10.1021/acs.biochem.2c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The spontaneous l-isoaspartate protein modification has been observed to negatively affect protein function. However, this modification can be reversed in many proteins in reactions initiated by the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (PCMT1). It has been hypothesized that an additional mechanism exists in which l-isoaspartate-damaged proteins are recognized and proteolytically degraded. Herein, we describe the protein-l-isoaspartate O-methyltransferase domain-containing protein 1 (PCMTD1) as a putative E3 ubiquitin ligase substrate adaptor protein. The N-terminal domain of PCMTD1 contains l-isoaspartate and S-adenosylmethionine (AdoMet) binding motifs similar to those in PCMT1. This protein also has a C-terminal domain containing suppressor of cytokine signaling (SOCS) box ubiquitin ligase recruitment motifs found in substrate receptor proteins of the Cullin-RING E3 ubiquitin ligases. We demonstrate specific PCMTD1 binding to the canonical methyltransferase cofactor S-adenosylmethionine (AdoMet). Strikingly, while PCMTD1 is able to bind AdoMet, it does not demonstrate any l-isoaspartyl methyltransferase activity under the conditions tested here. However, this protein is able to associate with the Cullin-RING proteins Elongins B and C and Cul5 in vitro and in human cells. The previously uncharacterized PCMTD1 protein may therefore provide an alternate maintenance pathway for modified proteins in mammalian cells by acting as an E3 ubiquitin ligase adaptor protein.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Eric Z Pang
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Esther Peluso
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan D Lowenson
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Joseph Y Ong
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
CRLF1 and CLCF1 in Development, Health and Disease. Int J Mol Sci 2022; 23:ijms23020992. [PMID: 35055176 PMCID: PMC8780587 DOI: 10.3390/ijms23020992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cytokines and their receptors have a vital function in regulating various processes such as immune function, inflammation, haematopoiesis, cell growth and differentiation. The interaction between a cytokine and its specific receptor triggers intracellular signalling cascades that lead to altered gene expression in the target cell and consequent changes in its proliferation, differentiation, or activation. In this review, we highlight the role of the soluble type I cytokine receptor CRLF1 (cytokine receptor-like factor-1) and the Interleukin (IL)-6 cytokine CLCF1 (cardiotrophin-like cytokine factor 1) during development in physiological and pathological conditions with particular emphasis on Crisponi/cold-induced sweating syndrome (CS/CISS) and discuss new insights, challenges and possibilities arising from recent studies.
Collapse
|
13
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
14
|
Xia T, Zhang L, Sun G, Yang X, Zhang H. Genomic evidence of adaptive evolution in the reptilian SOCS gene family. PeerJ 2021; 9:e11677. [PMID: 34221740 PMCID: PMC8236234 DOI: 10.7717/peerj.11677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The suppressor of the cytokine signaling (SOCS) family of proteins play an essential role in inhibiting cytokine receptor signaling by regulating immune signal pathways. Although SOCS gene functions have been examined extensively, no comprehensive study has been performed on this gene family's molecular evolution in reptiles. In this study, we identified eight canonical SOCS genes using recently-published reptilian genomes. We used phylogenetic analysis to determine that the SOCS genes had highly conserved evolutionary dynamics that we classified into two types. We identified positive SOCS4 selection signals in whole reptile lineages and SOCS2 selection signals in the crocodilian lineage. Selective pressure analyses using the branch model and Z-test revealed that these genes were under different negative selection pressures compared to reptile lineages. We also concluded that the nature of selection pressure varies across different reptile lineages on SOCS3, and the crocodilian lineage has experienced rapid evolution. Our results may provide a theoretical foundation for further analyses of reptilian SOCS genes' functional and molecular mechanisms, as well as their roles in reptile growth and development.
Collapse
Affiliation(s)
- Tian Xia
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Lei Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
15
|
Kotyla PJ, Engelmann M, Giemza-Stokłosa J, Wnuk B, Islam MA. Thromboembolic Adverse Drug Reactions in Janus Kinase (JAK) Inhibitors: Does the Inhibitor Specificity Play a Role? Int J Mol Sci 2021; 22:2449. [PMID: 33671049 PMCID: PMC7957632 DOI: 10.3390/ijms22052449] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in immunology enabled the characterization of several signal transmitting pathways responsible for proper cytokine and chemokine signaling. Among them, Janus kinases (JAKs) are essential components of receptor activation systems. The discovery of JAK kinases enabled the synthesis of JAK kinase inhibitors (JAKi or Jakinibs), which have proven to be efficacious in the treatment of hematologic malignancies and several rheumatological disorders and continue to be investigated in many clinical indications. Blocking multiple cytokines belonging to several cytokine families with a single small molecule may, however, create a potential risk for the patients. Recently, a higher risk of thromboembolic complications, namely, deep vein thrombosis and pulmonary embolism, has been recognized as the main concern during treatment with Jakinibs. At present, it is not entirely clear whether this increased risk is related to direct cytokine blockade, the presence of concomitant diseases in treated patients or other unknown circumstances that work together to increase the risk of this side effect. In this review, we discuss data on the risk of thromboembolic side effects, with special emphasis on the mechanism that may be responsible for this increased risk. Many indirect data indicate that higher thromboembolic risk may be related to the specificity of JAK inhibitor action, such that preferentially blocking one signaling pathway upsets the balance between pro and anti-thrombotic activities.
Collapse
Affiliation(s)
- Przemysław J. Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Faculty in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
| | - Małgorzata Engelmann
- Department of Physiotherapy in Internal Medicine, Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | | | - Bartosz Wnuk
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
16
|
Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S, Vande Casteele N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:323-337. [PMID: 32203403 DOI: 10.1038/s41575-020-0273-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Cytokines are involved in intestinal homeostasis and pathological processes associated with inflammatory bowel disease (IBD). The biological effects of cytokines, including several involved in the pathology of Crohn's disease and ulcerative colitis, occur as a result of receptor-mediated signalling through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) DNA-binding families of proteins. Although therapies targeting cytokines have revolutionized IBD therapy, they have historically targeted individual cytokines, and an unmet medical need exists for patients who do not respond to or lose response to these treatments. Several small-molecule inhibitors of JAKs that have the potential to affect multiple pro-inflammatory cytokine-dependent pathways are in clinical development for the treatment of IBD, with one agent, tofacitinib, already approved for ulcerative colitis and several other agents with demonstrated efficacy in early phase trials. This Review describes the current understanding of JAK-STAT signalling in intestinal homeostasis and disease and the rationale for targeting this pathway as a treatment for IBD. The available evidence for the efficacy, safety and pharmacokinetics of JAK inhibitors in IBD as well as the potential approaches to optimize treatment with these agents, such as localized delivery or combination therapy, are also discussed.
Collapse
Affiliation(s)
- Azucena Salas
- Department of Gastroenterology, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristian Hernandez-Rocha
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital Inflammatory Bowel Disease Group, Toronto, Ontario, Canada
| | - Marjolijn Duijvestein
- Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - William Faubion
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MI, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Severine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Niels Vande Casteele
- Robarts Clinical Trials, London, ON, Canada. .,Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
TYK2 in Tumor Immunosurveillance. Cancers (Basel) 2020; 12:cancers12010150. [PMID: 31936322 PMCID: PMC7017180 DOI: 10.3390/cancers12010150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
We review the history of the tyrosine kinase 2 (TYK2) as the founding member of the Janus kinase (JAK) family and outline its structure-function relation. Gene-targeted mice and hereditary defects of TYK2 in men have established the biological and pathological functions of TYK2 in innate and adaptive immune responses to infection and cancer and in (auto-)inflammation. We describe the architecture of the main cytokine receptor families associated with TYK2, which activate signal transducers and activators of transcription (STATs). We summarize the cytokine receptor activities with well characterized dependency on TYK2, the types of cells that respond to cytokines and TYK2 signaling-induced cytokine production. TYK2 may drive beneficial or detrimental activities, which we explain based on the concepts of tumor immunoediting and the cancer-immunity cycle in the tumor microenvironment. Finally, we summarize current knowledge of TYK2 functions in mouse models of tumor surveillance. The biology and biochemistry of JAKs, TYK2-dependent cytokines and cytokine signaling in tumor surveillance are well covered in recent reviews and the oncogenic properties of TYK2 are reviewed in the recent Special Issue ‘Targeting STAT3 and STAT5 in Cancer’ of Cancers.
Collapse
|
18
|
Tsai MH, Pai LM, Lee CK. Fine-Tuning of Type I Interferon Response by STAT3. Front Immunol 2019; 10:1448. [PMID: 31293595 PMCID: PMC6606715 DOI: 10.3389/fimmu.2019.01448] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Type I interferon (IFN-I) is induced during innate immune response and is required for initiating antiviral activity, growth inhibition, and immunomodulation. STAT1, STAT2, and STAT3 are activated in response to IFN-I stimulation. STAT1, STAT2, and IRF9 form ISGF3 complex which transactivates downstream IFN-stimulated genes and mediates antiviral response. However, the role of STAT3 remains to be characterized. Here, we review the multiple actions of STAT3 on suppressing IFN-I responses, including blocking IFN-I signaling, downregulating the expression of ISGF3 components, and antagonizing the transcriptional activity of ISGF3. Finally, we discuss the evolution of the suppressive activity of STAT3 and the therapeutic potential of STAT3 inhibitors in host defense against viral infections and IFN-I-associated diseases.
Collapse
Affiliation(s)
- Ming-Hsun Tsai
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Mei Pai
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
19
|
Wang B, Wangkahart E, Secombes CJ, Wang T. Insights into the Evolution of the Suppressors of Cytokine Signaling (SOCS) Gene Family in Vertebrates. Mol Biol Evol 2019; 36:393-411. [PMID: 30521052 PMCID: PMC6368001 DOI: 10.1093/molbev/msy230] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The SOCS family are key negative regulators of cytokine and growth factor signaling. Typically, 8-17 SOCS genes are present in vertebrate species with eight known in mammals, classified as type I (SOCS4-7) and type II (CISH and SOCS1-3) SOCS. It was believed that the type II SOCS were expanded through the two rounds of whole genome duplication (1R and 2R WGDs) from a single CISH/SOCS1-3 precursor. Previously, 12 genes were identified in rainbow trout but here we report 15 additional loci are present, and confirm 26 of the genes are expressed, giving rainbow trout the largest SOCS gene repertoire identified to date. The discovery of the additional SOCS genes in trout has led to a novel model of SOCS family evolution, whereby the vertebrate SOCS gene family was derived from CISH/SOCS2, SOCS1/SOCS3, SOCS4/5, SOCS6, and SOCS7 ancestors likely present before the two WGD events. It is also apparent that teleost SOCS2b, SOCS4, and SOCS5b molecules are not true orthologues of mammalian SOCS2, SOCS4, and SOCS5, respectively. The rate of SOCS gene structural changes increased from 2R vertebrates, to 4R rainbow trout, and the genes with structural changes show large differences and low correlation coefficient of expression levels relative to their paralogues, suggesting a role of structural changes in expression and functional diversification. This study has important impacts in the functional prediction and understanding of the SOCS gene family in different vertebrates, and provides a framework for determining how many SOCS genes could be expected in a particular vertebrate species/lineage.
Collapse
Affiliation(s)
- Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P.R. China.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
20
|
Gao Y, Zhao H, Wang P, Wang J, Zou L. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand J Immunol 2018; 88:e12727. [PMID: 30341772 DOI: 10.1111/sji.12727] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Gao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm Sweden
| | - Honglei Zhao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Peng Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Jun Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Lili Zou
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| |
Collapse
|
21
|
Jiang WJ, Peng YC, Yang KM. Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treatment of diabetes. Exp Ther Med 2018; 16:3275-3285. [PMID: 30233674 PMCID: PMC6143874 DOI: 10.3892/etm.2018.6603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
It is established that a decrease in β-cell number and deficiency in the function of existing β-cells contribute to type 1 and type 2 diabetes mellitus. Therefore, a major focus of current research is to identify novel methods of improving the number and function of β-cells, so as to prevent and/or postpone the development of diabetes mellitus and potentially reverse diabetes mellitus. Based on prior knowledge of the above-mentioned causes, promising therapeutic approaches may include direct transplantation of islets, implantation and subsequent induced differentiation of progenitors/stem cells to β-cells, replication of pre-existing β-cells, or activation of endogenous β-cell progenitors. More recently, with regards to cell replacement and regenerative treatment for diabetes patients, the identification of cellular signaling pathways with related genes or corresponding proteins involved in diabetes has become a topic of interest. However, the majority of pathways and molecules associated with β-cells remain unresolved, and the specialized functions of known pathways remain unclear, particularly in humans. The current article has evaluated the progress of research on pivotal cellular signaling pathways involved with β-cell proliferation and survival, and their validity for therapeutic adult β-cell regeneration in diabetes. More efforts are required to elucidate the cellular events involved in human β-cell proliferation in terms of the underlying mechanisms and functions.
Collapse
Affiliation(s)
- Wen-Juan Jiang
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| | - Yun-Chuan Peng
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| | - Kai-Ming Yang
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
22
|
Are Janus Kinase Inhibitors Superior over Classic Biologic Agents in RA Patients? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7492904. [PMID: 29862290 PMCID: PMC5971265 DOI: 10.1155/2018/7492904] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
The Janus Kinases (JAKs) are a family of intracellular tyrosine kinases that provide transmission signals from cytokine, interferons, and many hormones receptors to the nucleus resulting in synthesis of many biologically active compounds and changing cell metabolism and function. That was theoretical background to synthetize the JAK inhibitors (Jakinibs). In recent years a substantial battery of evidence has been collected indicating the potential role of Jakinibs to interact with the specific elements of the immune system, therefore changing the inflammatory response. JAK kinase blockade offers a unique opportunity to block most of the key cytokines enabling the deep interaction into immune system functioning. Following discovery first Jakinibs were intensively studied in various forms of autoimmune diseases, including rheumatoid arthritis, and finally two Jakinibs tofacitinib and Baricitinib have been approved for the treatment of rheumatoid arthritis. Some clinical data indicated that under special circumstances Jakinibs may be even superior to biologics in the treatment of RA; however this suggestion should be verified in large clinical and observational studies.
Collapse
|
23
|
Protective Effects and Underlying Mechanisms of Compound Herba Houttuyniae in db/db Mice. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017; 77:521-546. [PMID: 28255960 PMCID: PMC7102286 DOI: 10.1007/s40265-017-0701-9] [Citation(s) in RCA: 736] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Janus kinase/signal transduction and activator of transcription (JAK-STAT) signaling pathway is implicated in the pathogenesis of inflammatory and autoimmune diseases including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. Many cytokines involved in the pathogenesis of autoimmune and inflammatory diseases use JAKs and STATs to transduce intracellular signals. Mutations in JAK and STAT genes cause a number of immunodeficiency syndromes, and polymorphisms in these genes are associated with autoimmune diseases. The success of small-molecule JAK inhibitors (Jakinibs) in the treatment of rheumatologic disease demonstrates that intracellular signaling pathways can be targeted therapeutically to treat autoimmunity. Tofacitinib, the first rheumatologic Jakinib, is US Food and Drug Administration (FDA) approved for rheumatoid arthritis and is currently under investigation for other autoimmune diseases. Many other Jakinibs are in preclinical development or in various phases of clinical trials. This review describes the JAK-STAT pathway, outlines its role in autoimmunity, and explains the rationale/pre-clinical evidence for targeting JAK-STAT signaling. The safety and clinical efficacy of the Jakinibs are reviewed, starting with the FDA-approved Jakinib tofacitinib, and continuing on to next-generation Jakinibs. Recent and ongoing studies are emphasized, with a focus on emerging indications for JAK inhibition and novel mechanisms of JAK-STAT signaling blockade.
Collapse
Affiliation(s)
- Shubhasree Banerjee
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Ann Biehl
- Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis Musculoskeletal and Skin diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Lupus Clinical Research Program, National Institute of Arthritis Musculoskeletal and Skin diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniella M Schwartz
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis Musculoskeletal and Skin diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Liongue C, Sertori R, Ward AC. Evolution of Cytokine Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:11-18. [DOI: 10.4049/jimmunol.1600372] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Cytokines represent essential mediators of cell–cell communication with particularly important roles within the immune system. These secreted factors are produced in response to developmental and/or environmental cues and act via cognate cytokine receptors on target cells, stimulating specific intracellular signaling pathways to facilitate appropriate cellular responses. This review describes the evolution of cytokine receptor signaling, focusing on the class I and class II receptor families and the downstream JAK–STAT pathway along with its key negative regulators. Individual components generated over a long evolutionary time frame coalesced to form an archetypal signaling pathway in bilateria that was expanded extensively during early vertebrate evolution to establish a substantial “core” signaling network, which has subsequently undergone limited diversification within discrete lineages. The evolution of cytokine receptor signaling parallels that of the immune system, particularly the emergence of adaptive immunity, which has likely been a major evolutionary driver.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|