1
|
Yang J, Chen M, Ye J, Ma H. Targeting PRAME for acute myeloid leukemia therapy. Front Immunol 2024; 15:1378277. [PMID: 38596687 PMCID: PMC11002138 DOI: 10.3389/fimmu.2024.1378277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Despite significant progress in targeted therapy for acute myeloid leukemia (AML), clinical outcomes are disappointing for elderly patients, patients with less fit disease characteristics, and patients with adverse disease risk characteristics. Over the past 10 years, adaptive T-cell immunotherapy has been recognized as a strategy for treating various malignant tumors. However, it has faced significant challenges in AML, primarily because myeloid blasts do not contain unique surface antigens. The preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, is abnormally expressed in AML and does not exist in normal hematopoietic cells. Accumulating evidence has demonstrated that PRAME is a useful target for treating AML. This paper reviews the structure and function of PRAME, its effects on normal cells and AML blasts, its implications in prognosis and follow-up, and its use in antigen-specific immunotherapy for AML.
Collapse
Affiliation(s)
- Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Hashimoto H, Güngör D, Krickeberg N, Schmitt J, Doll L, Schmidt M, Schleicher S, Criado-Moronati E, Schilbach K. TH1 cytokines induce senescence in AML. Leuk Res 2022; 117:106842. [DOI: 10.1016/j.leukres.2022.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
3
|
Molvi Z, O'Reilly RJ. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Cancer Treat Res 2022; 183:131-159. [PMID: 35551658 DOI: 10.1007/978-3-030-96376-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol 2019; 42:101306. [DOI: 10.1016/j.smim.2019.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|
5
|
Yanir AD, Martinez CA, Sasa G, Leung K, Gottschalk S, Omer B, Ahmed N, Hegde M, Eunji J, Liu H, Heslop HE, Brenner MK, Krance RA, Naik S. Current Allogeneic Hematopoietic Stem Cell Transplantation for Pediatric Acute Lymphocytic Leukemia: Success, Failure and Future Perspectives—A Single-Center Experience, 2008 to 2016. Biol Blood Marrow Transplant 2018; 24:1424-1431. [DOI: 10.1016/j.bbmt.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
|
6
|
Grant M, Bollard CM. Developing T-cell therapies for lymphoma without receptor engineering. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:622-631. [PMID: 29222313 PMCID: PMC6142576 DOI: 10.1182/asheducation-2017.1.622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
Affiliation(s)
- Melanie Grant
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
- Departments of Pediatrics and Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
7
|
Developing T-cell therapies for lymphoma without receptor engineering. Blood Adv 2017; 1:2579-2590. [PMID: 29296911 DOI: 10.1182/bloodadvances.2017009886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
|
8
|
Grant ML, Bollard CM. Cell therapies for hematological malignancies: don't forget non-gene-modified t cells! Blood Rev 2017; 32:203-224. [PMID: 29198753 DOI: 10.1016/j.blre.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022]
Abstract
Cell therapy currently performs an important role in the treatment of patients with various hematological malignancies. The response to the cell therapy is regulated by multiple factors including the patient's immune system status, genetic profile, stage at diagnosis, age, and underlying disease. Cell therapy that does not require genetic manipulation can be mediated by donor lymphocyte infusion strategies, selective depletion in the post-transplant setting and the ex vivo expansion of antigen-specific T cells. For hematologic malignancies, cell therapy is contributing to enhanced clinical responses and overall survival and the immune response to cell therapy is predictive of response in multiple cancer types. In this review we summarize the available T cell therapeutics that do not rely on gene engineering for the treatment of patients with blood cancers.
Collapse
Affiliation(s)
- Melanie L Grant
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
9
|
Yang D, Zhang X, Zhang X, Xu Y. The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol 2017; 96:1965-1982. [PMID: 29080982 DOI: 10.1007/s00277-017-3148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023]
Abstract
Recently, there has been remarkable progress in basic and preclinical studies of acute myeloid leukemia (AML). The improved outcomes of AML can largely be attributed to advances in supportive care and hematopoietic cell transplantation as opposed to conventional chemotherapy. However, as the 5-year survival rate remains low due to a high incidence of relapse, novel and effective treatments are urgently needed. Increasing attention is focusing on identifying suitable immunotherapeutic strategies for AML. Here, we describe the immunological features, mechanisms of immune escape, and recent progress in immunotherapy for AML. Problems encountered in the clinic will also be discussed. Although current outcomes may be limited, ongoing preclinical or clinical efforts are aimed at improving immunotherapy modalities and designing novel therapies, such as vaccines, monoclonal antibody therapy, chimeric antibody receptor-engineered T cells (CAR-T), TCR-engineered T cells (TCR-T), and checkpoint inhibitors, which may provide promising and effective therapies with higher specificity and efficacy for AML.
Collapse
Affiliation(s)
- Dan Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yanli Xu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|