1
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2024; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
2
|
Yao X, Wang Q, Han C, Nie J, Chang Y, Xu L, Wu B, Yan J, Chen Z, Kong W, Shi Y, Shan Y. Combined Nano-Vector Mediated-Transfer to Suppress HIV-1 Infection with Targeted Antibodies in-vitro. Int J Nanomedicine 2023; 18:4635-4645. [PMID: 37605734 PMCID: PMC10440090 DOI: 10.2147/ijn.s412915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Introduction Broadly neutralizing antibodies (bNAbs) have the ability to neutralize a considerable breadth of genetically diverse human immunodeficiency virus (HIV) strains. Passive immunization can potentially provide protection against HIV infection in animal models. However, the direct antibody infusion effect is limited due to the short half-life and deficient immunogenicity of the antibody. As an alternative strategy, we propose the use of nano viral vectors, specifically the adeno-associated virus (AAV), to continuously and systematically produce bNAbs against HIV. Methods Plasmids expressing bNAbs PG9, PG16, 10E8, and NIH45-46 antibodies were constructed, targeting three different epitopes of HIV. Additionally, the bNAbs gene mediated by rAAV8 was administered to generate long-term expression with a single injection. We established both single and combined immunization groups. The neutralizing activity of antibodies expressed in mice sera was subsequently evaluated. Results The expression of bNAbs in BALB/c mice can last for >24 weeks after a single intramuscular injection of rAAV8. Further studies show that neutralization of the HIV pseudovirus by sera from co-immunized mice with rAAV8 expressing 10E8 and PG16 was enhanced compared with mice immunized with 10E8 or PG16 alone. Conclusion The prolonged expression of neutralizing antibodies can be maintained over long periods in BALB/c mice. This combined immunization is a promising candidate strategy for HIV treatment.
Collapse
Affiliation(s)
- Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Changge Han
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Yaotian Chang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Lipeng Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Bingya Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Jingtian Yan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Zhiyuan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People’s Republic of China
| |
Collapse
|
3
|
Zhang Y, Qian L, Kuang Y, Liu J, Wang D, Xie W, Zhang L, Fu L. An adeno-associated virus-mediated immunotherapy for Alzheimer’s disease. Mol Immunol 2022; 144:26-34. [DOI: 10.1016/j.molimm.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
|
4
|
Broad and potent bispecific neutralizing antibody gene delivery using adeno-associated viral vectors for passive immunization against HIV-1. J Control Release 2021; 338:633-643. [PMID: 34509584 DOI: 10.1016/j.jconrel.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) possess favorable safety, and passive immunization using these can prevent or control human immunodeficiency virus type 1 (HIV-1) infection. However, bNAbs generally used for monotherapy (IC80 > 5 μg/mL) have limited breadth and potency and neutralize only 70-90% of all HIV-1 strains. To address the need for broader coverage of the HIV-1 epidemic and enhance the ability of bNAbs to target HIV-1, we fused the single-chain variable antibody fragment (scFv) of bNAbs (PG9, PGT123, or NIH45-46) with full-length ibalizumab (iMab) in an scFv-monoclonal antibody tandem format to construct bispecific bNAbs (BibNAbs). Additionally, we described the feasibility of BibNAb gene delivery mediated by recombinant adeno-associated virus 8 (rAAV8) for generating long-term expression with a single injection as opposed to short-term passive immunization requiring continuous injections. Our results showed that the expressed BibNAbs targeting two distinct epitopes exhibited neutralizing activity against 20 HIV-1 pseudoviruses in vitro. After injecting a single rAAV8 vector, the expression and neutralizing activity of the BibNAbs in serum were sustained for 24 weeks. To the best of our knowledge, very few studies have been published on BibNAb gene delivery using rAAV8 vectors against HIV-1. BibNAb gene delivery using rAAV8 vectors may be promising for passive immunization against HIV-1 infection.
Collapse
|
5
|
Li S, Wang B, Jiang S, Lan X, Qiao Y, Nie J, Yin Y, Shi Y, Kong W, Shan Y. Expression and evaluation of porcine circovirus type 2 capsid protein mediated by recombinant adeno-associated virus 8. J Vet Sci 2021; 22:e8. [PMID: 33522160 PMCID: PMC7850785 DOI: 10.4142/jvs.2021.22.e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/20/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an important infectious pathogen implicated in porcine circovirus-associated diseases (PCVAD), which has caused significant economic losses in the pig industry worldwide. Objectives A suitable viral vector-mediated gene transfer platform for the expression of the capsid protein (Cap) is an attractive strategy. Methods In the present study, a recombinant adeno-associated virus 8 (rAAV8) vector was constructed to encode Cap (Cap-rAAV) in vitro and in vivo after gene transfer. Results The obtained results showed that Cap could be expressed in HEK293T cells and BABL/c mice. The results of lymphocytes proliferative, as well as immunoglobulin G (IgG) 2a and interferon-γ showed strong cellular immune responses induced by Cap-rAAV. The enzyme-linked immunosorbent assay titers obtained and the IgG1 and interleukin-4 levels showed that humoral immune responses were also induced by Cap-rAAV. Altogether, these results demonstrated that the rAAV8 vaccine Cap-rAAV can induce strong cellular and humoral immune responses, indicating a potential rAAV8 vaccine against PCV2. Conclusions The injection of rAAV8 encoding PCV2 Cap genes into muscle tissue can ensure long-term, continuous, and systemic expression.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiaohui Lan
- The Second Hospital of Jilin University, Changchun 130012, China
| | - Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|