1
|
Ngai H, Barragan GA, Tian G, Balzeau JC, Zhang C, Courtney AN, Guo L, Xu X, Wood MS, Drabek JM, Demberg T, Sands CM, Chauvin-Fleurence CN, Di Pierro EJ, Rosen JM, Metelitsa LS. LEF1 Drives a Central Memory Program and Supports Antitumor Activity of Natural Killer T Cells. Cancer Immunol Res 2023; 11:171-183. [PMID: 36484736 PMCID: PMC9898189 DOI: 10.1158/2326-6066.cir-22-0333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Vα24-invariant natural killer T cells (NKT) possess innate antitumor properties that can be exploited for cancer immunotherapy. We have shown previously that the CD62L+ central memory-like subset of these cells drives the in vivo antitumor activity of NKTs, but molecular mediators of NKT central memory differentiation remain unknown. Here, we demonstrate that relative to CD62L- cells, CD62L+ NKTs express a higher level of the gene encoding the Wnt/β-catenin transcription factor lymphoid enhancer binding factor 1 (LEF1) and maintain active Wnt/β-catenin signaling. CRISPR/Cas9-mediated LEF1 knockout reduced CD62L+ frequency after antigenic stimulation, whereas Wnt/β-catenin activator Wnt3a ligand increased CD62L+ frequency. LEF1 overexpression promoted NKT expansion and limited exhaustion following serial tumor challenge and was sufficient to induce a central memory-like transcriptional program in NKTs. In mice, NKTs expressing a GD2-specific chimeric-antigen receptor (CAR) with LEF1 demonstrated superior control of neuroblastoma xenograft tumors compared with control CAR-NKTs. These results identify LEF1 as a transcriptional activator of the NKT central memory program and advance development of NKT cell-based immunotherapy. See related Spotlight by Van Kaer, p. 144.
Collapse
Affiliation(s)
- Ho Ngai
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030
| | - Gabriel A. Barragan
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Gengwen Tian
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Julien C. Balzeau
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Chunchao Zhang
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Amy N. Courtney
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Xin Xu
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Michael S. Wood
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Janice M. Drabek
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Thorsten Demberg
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Caroline M. Sands
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Cynthia N. Chauvin-Fleurence
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Erica J. Di Pierro
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Jeffrey M. Rosen
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030
| | - Leonid S. Metelitsa
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
2
|
Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity. Int J Mol Sci 2020; 21:ijms21134638. [PMID: 32629812 PMCID: PMC7369932 DOI: 10.3390/ijms21134638] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) group of neurons comprises molecularly distinct subgroups, of which the substantia nigra (SN) and ventral tegmental area (VTA) are the best known, due to the selective degeneration of the SN during Parkinson’s disease. However, although significant research has been conducted on the molecular build-up of these subsets, much is still unknown about how these subsets develop and which factors are involved in this process. In this review, we aim to describe the life of an mdDA neuron, from specification in the floor plate to differentiation into the different subsets. All mdDA neurons are born in the mesodiencephalic floor plate under the influence of both SHH-signaling, important for floor plate patterning, and WNT-signaling, involved in establishing the progenitor pool and the start of the specification of mdDA neurons. Furthermore, transcription factors, like Ngn2, Ascl1, Lmx1a, and En1, and epigenetic factors, like Ezh2, are important in the correct specification of dopamine (DA) progenitors. Later during development, mdDA neurons are further subdivided into different molecular subsets by, amongst others, Otx2, involved in the specification of subsets in the VTA, and En1, Pitx3, Lmx1a, and WNT-signaling, involved in the specification of subsets in the SN. Interestingly, factors involved in early specification in the floor plate can serve a dual function and can also be involved in subset specification. Besides the mdDA group of neurons, other systems in the embryo contain different subsets, like the immune system. Interestingly, many factors involved in the development of mdDA neurons are similarly involved in immune system development and vice versa. This indicates that similar mechanisms are used in the development of these systems, and that knowledge about the development of the immune system may hold clues for the factors involved in the development of mdDA neurons, which may be used in culture protocols for cell replacement therapies.
Collapse
|
3
|
Pyaram K, Kumar A, Kim YH, Noel S, Reddy SP, Rabb H, Chang CH. Keap1-Nrf2 System Plays an Important Role in Invariant Natural Killer T Cell Development and Homeostasis. Cell Rep 2020; 27:699-707.e4. [PMID: 30995469 DOI: 10.1016/j.celrep.2019.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/02/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) proteins work in concert to regulate the levels of reactive oxygen species (ROS). The Keap1-Nrf2 antioxidant system also participates in T cell differentiation and inflammation, but its role in innate T cell development and functions remains unclear. We report that T cell-specific deletion of Keap1 results in defective development and reduced numbers of invariant natural killer T (NKT) cells in the thymus and the peripheral organs in a cell-intrinsic manner. The frequency of NKT2 and NKT17 cells increases while NKT1 decreases in these mice. Keap1-deficient NKT cells show increased rates of proliferation and apoptosis, as well as increased glucose uptake and mitochondrial function, but reduced ROS, CD122, and Bcl2 expression. In NKT cells deficient in Nrf2 and Keap1, all these phenotypic and metabolic defects are corrected. Thus, the Keap1-Nrf2 system contributes to NKT cell development and homeostasis by regulating cell metabolism.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yeung-Hyen Kim
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Malla RR, Deepak K, Merchant N, Dasari VR. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153227. [PMID: 32339885 DOI: 10.1016/j.phymed.2020.153227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| | - Kgk Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 Academy Ave, Danville, PA, 17822, USA
| |
Collapse
|
5
|
Klibi J, Amable L, Benlagha K. A focus on natural killer T-cell subset characterization and developmental stages. Immunol Cell Biol 2020; 98:358-368. [PMID: 32187747 DOI: 10.1111/imcb.12322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Almost 20 years ago, CD1d tetramers were developed to track invariant natural killer T (NKT) cells based on their specificity, and to define developmental steps during which differentiation markers and functional features are progressively acquired from early NKT cell precursor to fully mature NKT cell subsets. Based on these findings, a linear developmental model was proposed and subsequently used by all studies investigating the specific role of factors that control NKT cell development. More recently, based on intracellular staining patterns of lineage-specific transcription factors such as T-bet, GATA-3, promyelocytic leukemia zinc finger and RORγt, a lineage differentiation model was proposed for NKT cell development. Currently, studies on NKT cells development present lineage differentiation model data in addition to the linear maturation model. In the perspective presented here, we discuss current knowledge relating to NKT cell developmental models and particularly focus on the approaches and strategies, some of which appear nebulous, used to define NKT cell developmental stages and subsets.
Collapse
Affiliation(s)
- Jihene Klibi
- INSERM, UMR-1160, Institut de Recherche St-Louis (IRSL), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ludivine Amable
- INSERM, UMR-1160, Institut de Recherche St-Louis (IRSL), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kamel Benlagha
- INSERM, UMR-1160, Institut de Recherche St-Louis (IRSL), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
6
|
Wnt Signaling in Cancer Metabolism and Immunity. Cancers (Basel) 2019; 11:cancers11070904. [PMID: 31261718 PMCID: PMC6678221 DOI: 10.3390/cancers11070904] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
The Wingless (Wnt)/β-catenin pathway has long been associated with tumorigenesis, tumor plasticity, and tumor-initiating cells called cancer stem cells (CSCs). Wnt signaling has recently been implicated in the metabolic reprogramming of cancer cells. Aberrant Wnt signaling is considered to be a driver of metabolic alterations of glycolysis, glutaminolysis, and lipogenesis, processes essential to the survival of bulk and CSC populations. Over the past decade, the Wnt pathway has also been shown to regulate the tumor microenvironment (TME) and anti-cancer immunity. Wnt ligands released by tumor cells in the TME facilitate the immune evasion of cancer cells and hamper immunotherapy. In this review, we illustrate the role of the canonical Wnt/β-catenin pathway in cancer metabolism and immunity to explore the potential therapeutic approach of targeting Wnt signaling from a metabolic and immunological perspective.
Collapse
|
7
|
Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function. Proc Natl Acad Sci U S A 2019; 116:7439-7448. [PMID: 30910955 DOI: 10.1073/pnas.1901376116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular metabolism and signaling pathways are key regulators to determine conventional T cell fate and function, but little is understood about the role of cell metabolism for natural killer T (NKT) cell survival, proliferation, and function. We found that NKT cells operate distinct metabolic programming from CD4 T cells. NKT cells are less efficient in glucose uptake than CD4 T cells with or without activation. Gene-expression data revealed that, in NKT cells, glucose is preferentially metabolized by the pentose phosphate pathway and mitochondria, as opposed to being converted into lactate. In fact, glucose is essential for the effector functions of NKT cells and a high lactate environment is detrimental for NKT cell survival and proliferation. Increased glucose uptake and IFN-γ expression in NKT cells is inversely correlated with bacterial loads in response to bacterial infection, further supporting the significance of glucose metabolism for NKT cell function. We also found that promyelocytic leukemia zinc finger seemed to play a role in regulating NKT cells' glucose metabolism. Overall, our study reveals that NKT cells use distinct arms of glucose metabolism for their survival and function.
Collapse
|
8
|
Shissler SC, Webb TJ. The ins and outs of type I iNKT cell development. Mol Immunol 2018; 105:116-130. [PMID: 30502719 DOI: 10.1016/j.molimm.2018.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/14/2018] [Accepted: 09/29/2018] [Indexed: 01/07/2023]
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that bridge the gap between the innate and adaptive immune responses. Like innate immune cells, they have a mature, effector phenotype that allows them to rapidly respond to threats, compared to adaptive cells. NKT cells express T cell receptors (TCRs) like conventional T cells, but instead of responding to peptide antigen presented by MHC class I or II, NKT cell TCRs recognize glycolipid antigen in the context of CD1d. NKT cells are subdivided into classes based on their TCR and antigen reactivity. This review will focus on type I iNKT cells that express a semi invariant Vα14Jα18 TCR and respond to the canonical glycolipid antigen, α-galactosylceramide. The innate-like effector functions of these cells combined with their T cell identity make their developmental path quite unique. In addition to the extrinsic factors that affect iNKT cell development such as lipid:CD1d complexes, co-stimulation, and cytokines, this review will provide a comprehensive delineation of the cell intrinsic factors that impact iNKT cell development, differentiation, and effector functions - including TCR rearrangement, survival and metabolism signaling, transcription factor expression, and gene regulation.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA.
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
PDCD5 regulates iNKT cell terminal maturation and iNKT1 fate decision. Cell Mol Immunol 2018; 16:746-756. [PMID: 29921968 DOI: 10.1038/s41423-018-0059-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023] Open
Abstract
Invariant natural killer T1 (iNKT1) cells are characterized by the preferential expression of T-box transcription factor T-bet (encoded by Tbx21) and the production of cytokine IFN-γ, but the relationship between the developmental process and iNKT1 lineage diversification in the thymus remains elusive. We report in the present study a crucial role of programmed cell death 5 (PDCD5) in iNKT cell terminal maturation and iNKT1 fate determination. Mice with T cell-specific deletion of PDCD5 had decreased numbers of thymic and peripheral iNKT cells with a predominantly immature phenotype and defects in response to α-galactosylceramide. Loss of PDCD5 also selectively abolished the iNKT1 lineage by reducing T-bet expression in iNKT cells at an early thymic developmental stage (before CD44 upregulation). We further demonstrated that TOX2, one of the high mobility group proteins that was highly expressed in iNKT cells at stage 1 and could be stabilized by PDCD5, promoted the permissive histone H3K4me3 modification in the promoter region of Tbx21. These data indicate a pivotal and unique role of PDCD5/TOX2 in iNKT1 lineage determination. They also suggest that the fate of iNKT1 may be programmed at the developmental stage of iNKT cells in the thymus.
Collapse
|
10
|
Abstract
Type I or invariant natural killer T cells belong to a unique lineage of innate T cells, which express markers of both T lymphocytes and NK cells, namely T cell receptor (TCR) and NK1.1 (CD161C), respectively. Thus, apart from direct killing of target cells like NK cells, and they also produce a myriad of cytokines which modulate the adaptive immune responses. Unlike traditional T cells which carry a conventional αβ TCR, NKT cells express semi-invariant TCR - Vα14-Jα18, coupled with Vβ8, Vβ7 and Vβ2 in mice. In humans, the invariant TCR is composed of Vα24-Jα18, coupled with Vβ11.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
| | - Viveka Nand Yadav
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
11
|
Kim YH, Kumar A, Chang CH, Pyaram K. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger. THE JOURNAL OF IMMUNOLOGY 2017; 199:3478-3487. [PMID: 29021374 DOI: 10.4049/jimmunol.1700567] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells.
Collapse
Affiliation(s)
- Yeung-Hyen Kim
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|