1
|
Cognitive Impairment, Sleep Disturbance, and Depression in Women with Silicone Breast Implants: Association with Autoantibodies against Autonomic Nervous System Receptors. Biomolecules 2022; 12:biom12060776. [PMID: 35740901 PMCID: PMC9221347 DOI: 10.3390/biom12060776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Silicone breast implants (SBIs) has been shown to be associated with an increased risk of autoimmune diseases. In the current study, we aimed to explore the potential association between circulating autoantibodies against the autonomic nervous system and cognitive impairment, memory deficit, and depressive symptoms reported by women with SBIs. Methods: ELISA assays were used to quantify anti-adrenergic receptors (α1, α2, β1, β2), anti-muscarinic receptors (M1-M5), anti-endothelin receptor type A, and anti-angiotensin II type 1 receptor titers in the sera of 93 symptomatic female subjects with SBIs and 36 age-matched healthy female controls. Results: A significant difference was detected in the level of autoantibodies against the autonomic nervous system receptors in women with SBIs who reported memory impairment, cognitive impairment, and sleep disturbance as compared with both women with SBIs who did not complain of these symptoms or with healthy individuals without SBIs. Conclusions: Clinical symptoms such as depression, cognitive impairment, and sleep disturbances were found to be associated with dysregulation of the levels of circulating autoantibodies targeting the autonomous nervous system receptors in women with SBIs. These autoantibodies may have diagnostic significance in diseases associated with breast implants.
Collapse
|
2
|
Gianchecchi E, Delfino DV, Fierabracci A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front Immunol 2021; 12:616853. [PMID: 33679757 PMCID: PMC7933577 DOI: 10.3389/fimmu.2021.616853] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Siena, Italy.,Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
3
|
Bautista-Vargas M, Vivas AJ, Tobón GJ. Minor salivary gland biopsy: Its role in the classification and prognosis of Sjögren's syndrome. Autoimmun Rev 2020; 19:102690. [PMID: 33099041 DOI: 10.1016/j.autrev.2020.102690] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder characterized by mononuclear cell infiltration in the exocrine glands, which leads to sicca syndrome (xerostomia and xerophthalmia). The etiology of SS is unknown, but multiple environmental factors (infectious, hormonal and stress-related), as well as genetic factors, may play a role in its pathogenesis. The diagnosis of SS is complex considering its clinical and paraclinical parameters may not be very specific. The minor salivary gland biopsy (MSGB) has undoubtedly become crucial for classifying and determining the prognosis of SS. The three main different classification systems for its interpretation have been described by Chisholm and Mason, Greenspan and Daniels, and Tarpley. However, this invasive procedure has variable sensitivity and specificity as well as low reproducibility. The use of additional methods, such as skin biopsy, imaging techniques, and serum/salivary biomarkers, may be combined with current methods to develop a bioscore that could increase diagnostic performance. In this review, we summarized the main pathological findings in SS and the prognosis of patients with SS according to the biopsy results.
Collapse
Affiliation(s)
- Mario Bautista-Vargas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Alvaro J Vivas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Gabriel J Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.
| |
Collapse
|
4
|
Halpert G, Amital H, Shoenfeld Y. Dysregulation of G protein-coupled receptors of the autonomic nervous system, adrenergic and muscarinic acetylcholine receptors, in patients with autoimmune dysautonomic-related disorders. Brain Behav Immun Health 2020; 4:100056. [PMID: 34589842 PMCID: PMC8474541 DOI: 10.1016/j.bbih.2020.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat- Gan, 52621, Israel.,Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Howard Amital
- Department of Medicine 'B' and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel.,Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| |
Collapse
|
5
|
Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020; 2020:8060375. [PMID: 32258176 PMCID: PMC7104265 DOI: 10.1155/2020/8060375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatic diseases are extremely heterogeneous diseases with substantial risks of morbidity and mortality, and there is a pressing need in developing more safe and cost-effective treatment strategies. Peptide-based vaccination is a highly desirable strategy in treating noninfection diseases, such as cancer and autoimmune diseases, and has gained increasing attentions. This review is aimed at providing a brief overview of the recent advances in peptide-based vaccination therapy for rheumatic diseases. Tremendous efforts have been made to develop effective peptide-based vaccinations against rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), while studies in other rheumatic diseases are still limited. Peptide-based active vaccination against pathogenic cytokines such as TNF-α and interferon-α (IFN-α) is shown to be promising in treating RA or SLE. Moreover, peptide-based tolerogenic vaccinations also have encouraging results in treating RA or SLE. However, most studies available now have been mainly based on animal models, while evidence from clinical studies is still lacking. The translation of these advances from experimental studies into clinical therapy remains impeded by some obstacles such as species difference in immunity, disease heterogeneity, and lack of safe delivery carriers or adjuvants. Nevertheless, advances in high-throughput technology, bioinformatics, and nanotechnology may help overcome these impediments and facilitate the successful development of peptide-based vaccination therapy for rheumatic diseases.
Collapse
|
6
|
Zn 2+ stimulates salivary secretions via metabotropic zinc receptor ZnR/GPR39 in human salivary gland cells. Sci Rep 2019; 9:17648. [PMID: 31776425 PMCID: PMC6881433 DOI: 10.1038/s41598-019-54173-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Zn2+ is a divalent cation that is essential for many biological activities, as it influences many ion channels and enzymatic activities. Zn2+ can evoke G-protein-coupled receptor signaling via activation of the metabotropic zinc receptor ZnR/GPR39. In spite of evidence suggesting the presence of ZnR/GPR39 in salivary gland cells, there has been no evidence of ZnR/GPR39-mediated modulation of salivary gland function. Here we characterized the role of ZnR/GPR39 in human submandibular gland cells. A 0.25% ZnCl2 solution evoked secretion of unstimulated and stimulated whole saliva in humans. We found that ZnR/GPR39 is expressed in human submandibular glands and HSG cells. Zn2+ increased cytosolic Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner. Muscarinic antagonist had no effect on Zn2+-induced [Ca2+]i increase, which was completely blocked by the phospholipase C-β inhibitor. As with muscarinic agonist, Zn2+ also induced the translocation of aquaporin-5 (AQP-5) to the plasma membrane, which was drastically decreased in ZnR/GPR39-knockdown cells. These data suggest that the metabotropic Zn2+ receptor ZnR/GPR39 can modulate salivary secretion in human submandibular gland cells independent of muscarinic or histamine receptor signaling.
Collapse
|
7
|
Giil LM, Aarsland D, Hellton K, Lund A, Heidecke H, Schulze-Forster K, Riemekasten G, Vik-Mo AO, Kristoffersen EK, Vedeler CA, Nordrehaug JE. Antibodies to Multiple Receptors are Associated with Neuropsychiatric Symptoms and Mortality in Alzheimer’s Disease: A Longitudinal Study. J Alzheimers Dis 2018; 64:761-774. [DOI: 10.3233/jad-170882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lasse M. Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, Kings College, UK
- Centre for Age-Related Diseases (SESAM), Stavanger University Hospital, Norway
| | | | - Anders Lund
- Department of Clinical Science, University of Bergen, Norway
| | | | | | - Gabriela Riemekasten
- Department of Rheumatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Audun Osland Vik-Mo
- Department of Clinical Science, University of Bergen, Norway
- Centre for Age-Related Diseases (SESAM), Stavanger University Hospital, Norway
| | - Einar K. Kristoffersen
- Department of Clinical Science, University of Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian A. Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Norway
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|