1
|
Rahmat JN, Tham SM, Ong TL, Lim YK, Patwardhan MV, Nee Mani LR, Kamaraj R, Chan YH, Chong TW, Chiong E, Esuvaranathan K, Mahendran R. Glutathione-S-Transferase Theta 2 (GSTT2) Modulates the Response to Bacillus Calmette-Guérin Immunotherapy in Bladder Cancer Patients. Int J Mol Sci 2024; 25:8947. [PMID: 39201633 PMCID: PMC11354831 DOI: 10.3390/ijms25168947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Glutathione-S-transferases (GST) enzymes detoxify xenobiotics and are implicated in response to anticancer therapy. This study evaluated the association of GST theta 1 (GSTT1), GSTT2, and GSTT2B with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) response in non-muscle-invasive bladder cancer treatment. In vitro assessments of GSTT2 knockout (KO) effects were performed using cell lines and dendritic cells (DCs) from GSTT2KO mice. Deletion of GSTT2B, GSTT1, and single-nucleotide polymorphisms in the promoter region of GSTT2 was analysed in patients (n = 205) and healthy controls (n = 150). Silencing GSTT2 expression in MGH cells (GSTT2BFL/FL) resulted in increased BCG survival (p < 0.05) and decreased cellular reactive oxygen species. In our population, there are 24.2% with GSTT2BDel/Del and 24.5% with GSTT2BFL/FL. With ≤ 8 instillations of BCG therapy (n = 51), 12.5% of GSTT2BDel/Del and 53.8% of GSTT2BFL/FL patients had a recurrence (p = 0.041). With ≥9 instillations (n = 153), the disease recurred in 45.5% of GSTT2BDel/Del and 50% of GSTT2BFL/FL. GSTT2FL/FL patients had an increased likelihood of recurrence post-BCG therapy (HR 5.5 [1.87-16.69] p < 0.002). DCs from GSTT2KO mice produced three-fold more IL6 than wild-type DCs, indicating a robust inflammatory response. To summarise, GSTT2BDel/Del patients respond better to less BCG therapy and could be candidates for a reduced surveillance regimen.
Collapse
Affiliation(s)
- Juwita N. Rahmat
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Sin Mun Tham
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Ting Li Ong
- School of Engineering, Biomedical Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Yew Koon Lim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Mugdha Vijay Patwardhan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Lata Raman Nee Mani
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Revathi Kamaraj
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Tsung Wen Chong
- Department of Urology, Singapore General Hospital, Singapore 169608, Singapore;
- Division of Surgery & Surgical Oncology, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Edmund Chiong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
- Department of Urology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Kesavan Esuvaranathan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
- Department of Urology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| |
Collapse
|
2
|
Tang X, Fang M, Cheng R, Niu J, Huang X, Xu K, Wang G, Sun Y, Liao Z, Zhang Z, Mwangi J, Lu Q, Wang A, Lv L, Liu C, Miao Y, Lai R. Transferrin Is Up-Regulated by Microbes and Acts as a Negative Regulator of Immunity to Induce Intestinal Immunotolerance. RESEARCH (WASHINGTON, D.C.) 2024; 7:0301. [PMID: 38274126 PMCID: PMC10809841 DOI: 10.34133/research.0301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Cross-talks (e.g., host-driven iron withdrawal and microbial iron uptake between host gastrointestinal tract and commensal microbes) regulate immunotolerance and intestinal homeostasis. However, underlying mechanisms that regulate the cross-talks remain poorly understood. Here, we show that bacterial products up-regulate iron-transporter transferrin and transferrin acts as an immunosuppressor by interacting with cluster of differentiation 14 (CD14) to inhibit pattern recognition receptor (PRR) signaling and induce host immunotolerance. Decreased intestinal transferrin is found in germ-free mice and human patients with ulcerative colitis, which are characterized by impaired intestinal immunotolerance. Intestinal transferrin and host immunotolerance are returned to normal when germ-free mice get normal microbial commensalism, suggesting an association between microbial commensalism, transferrin, and host immunotolerance. Mouse colitis models show that transferrin shortage impairs host's tolerogenic responses, while its supplementation promotes immunotolerance. Designed peptide blocking transferrin-CD14 interaction inhibits immunosuppressive effects of transferrin. In monkeys with idiopathic chronic diarrhea, transferrin shows comparable or even better therapeutic effects than hydrocortisone. Our findings reveal that by up-regulating host transferrin to silence PRR signaling, commensal bacteria counteract immune activation induced by themselves to shape host immunity and contribute for intestinal tolerance.
Collapse
Affiliation(s)
- Xiaopeng Tang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- School of Basic Medicine,
Qingdao University, Qingdao 266071, Shandong, China
| | - Mingqian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Ruomei Cheng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Junkun Niu
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University,
Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- Kunming College of Life Science,
University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Kuanhong Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences,
University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gan Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Yang Sun
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University,
Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Zhiyi Liao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- Kunming College of Life Science,
University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Zhiye Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- Kunming College of Life Science,
University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China
| | - Longbao Lv
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Chao Liu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University,
Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| |
Collapse
|
3
|
Jonny, Putranto TA, Purnama Y, Djatmiko R, Yana ML, Sitepu EC, Irfon R. Significant improvement of systemic lupus erythematosus manifestation in children after autologous dendritic cell transfer: a case report and review of literature. Ther Adv Vaccines Immunother 2023; 11:25151355231186005. [PMID: 37719802 PMCID: PMC10501061 DOI: 10.1177/25151355231186005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Dendritic cells (DC) are postulated to play a role in autoimmune diseases such as Systemic Lupus Erythematosus (SLE). We reported a 13-year-old female SLE patient who presents with chronic arthritis accompanied by persistent fever, dyspnea, sleep disturbance, headache, stomatitis, rash, and muscle weakness. The supporting examinations showed abnormal blood cell counts, positive antinuclear antibody profile, serositis, and neuropathy. Immunosuppressants failed to improve the condition. DC-based vaccine derived from autologous peripheral blood which was introduced with SARS-CoV-2 protein was given to this patient. There was a significant improvement in clinical and laboratory findings. Thus, DC immunotherapy appears to be a potential novel therapy for SLE that needs to be studied.
Collapse
Affiliation(s)
- Jonny
- Faculty of Medicine, Jakarta Veterans National Development University, Jakarta, Indonesia
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jl. Abdul Rahman Saleh Raya No. 24 RT10/RW5, Jakarta 10410, Indonesia
| | | | - Yenny Purnama
- Pediatric Department Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| | - Roedi Djatmiko
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| | - Martina Lily Yana
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| | | | - Raoulian Irfon
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| |
Collapse
|
4
|
Lipoteichoic Acid from Lacticaseibacillus rhamnosus GG Modulates Dendritic Cells and T Cells in the Gut. Nutrients 2022; 14:nu14030723. [PMID: 35277082 PMCID: PMC8839024 DOI: 10.3390/nu14030723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Lipoteichoic acid (LTA) from Gram-positive bacteria exerts different immune effects depending on the bacterial source from which it is isolated. Lacticaseibacillus rhamnosus GG LTA (LGG-LTA) oral administration reduces UVB-induced immunosuppression and skin tumor development in mice. In the present work, we evaluate the immunomodulatory effect exerted by LGG-LTA in dendritic cells (DC) and T cells, both in vitro and in the gut-associated lymphoid tissue (GALT). During cell culture, LTA-stimulated BMDC increased CD86 and MHC-II expression and secreted low levels of pro and anti-inflammatory cytokines. Moreover, LTA-treated BMDC increased T cell priming capacity, promoting the secretion of IL-17A. On the other hand, in orally LTA-treated mice, a decrease in mature DC (lamina propria and Peyer’s patches) was observed. Concomitantly, an increase in IL-12p35 and IFN-γ transcription was presented (lamina propria and Peyer’s Patches). Finally, an increase in the number of CD103+ DC was observed in Peyer’s patches. Together, our data demonstrate that LGG-LTA activates DC and T cells. Moreover, we show that a Th1-biased immune response is triggered in vivo after oral LTA administration. These effects justify the oral LTA activity previously observed.
Collapse
|
5
|
Avendaño-Ortiz J, Lozano-Rodríguez R, Martín-Quirós A, Maroun-Eid C, Terrón-Arcos V, Montalbán-Hernández K, Valentín J, Muñoz Del Val E, García-Garrido MA, Del Balzo-Castillo Á, Casalvilla-Dueñas JC, Peinado M, Gómez L, Herrero-Benito C, Rubio C, Cubillos-Zapata C, Pascual-Iglesias A, Del Fresno C, Aguirre LA, López-Collazo E. SARS-CoV-2 Proteins Induce Endotoxin Tolerance Hallmarks: A Demonstration in Patients with COVID-19. THE JOURNAL OF IMMUNOLOGY 2021; 207:162-174. [PMID: 34183364 DOI: 10.4049/jimmunol.2001449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/16/2021] [Indexed: 01/08/2023]
Abstract
According to a large number of reported cohorts, sepsis has been observed in nearly all deceased patients with COVID-19. We and others have described sepsis, among other pathologies, to be an endotoxin tolerance (ET)-related disease. In this study, we demonstrate that the culture of human blood cells from healthy volunteers in the presence of SARS-CoV-2 proteins induced ET hallmarks, including impairment of proinflammatory cytokine production, low MHC class II (HLA-DR) expression, poor T cell proliferation, and enhancing of both phagocytosis and tissue remodeling. Moreover, we report the presence of SARS-CoV-2 blood circulating proteins in patients with COVID-19 and how these levels correlate with an ET status, the viral RNA presence of SARS-CoV-2 in plasma, as well as with an increase in the proportion of patients with secondary infections.
Collapse
Affiliation(s)
- José Avendaño-Ortiz
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Roberto Lozano-Rodríguez
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Alejandro Martín-Quirós
- Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Charbel Maroun-Eid
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón-Arcos
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Karla Montalbán-Hernández
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Jaime Valentín
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Elena Muñoz Del Val
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Miguel A García-Garrido
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Álvaro Del Balzo-Castillo
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - José Carlos Casalvilla-Dueñas
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - María Peinado
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Laura Gómez
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Carmen Herrero-Benito
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carolina Rubio
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Alejandro Pascual-Iglesias
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carlos Del Fresno
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Luis A Aguirre
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; .,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Center for Biomedical Research Network, Madrid, Spain
| |
Collapse
|
6
|
Kye YC, Park SM, Shim BS, Firdous J, Kim G, Kim HW, Ju YJ, Kim CG, Cho CS, Kim DW, Cho JH, Song MK, Han SH, Yun CH. Intranasal immunization with pneumococcal surface protein A in the presence of nanoparticle forming polysorbitol transporter adjuvant induces protective immunity against the Streptococcus pneumoniae infection. Acta Biomater 2019; 90:362-372. [PMID: 30922953 DOI: 10.1016/j.actbio.2019.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/06/2019] [Accepted: 03/24/2019] [Indexed: 02/03/2023]
Abstract
Developing effective mucosal subunit vaccine for the Streptococcus pneumoniae has been unsuccessful mainly because of their poor immunogenicity with insufficient memory T and B cell responses. We thus address whether such limitation can be overcome by introducing effective adjuvants that can enhance immunity and show here that polysorbitol transporter (PST) serves as a mucosal adjuvant for a subunit vaccine against the Streptococcus pneumoniae. Pneumococcal surface protein A (PspA) with PST adjuvant induced protective immunity against S. pneumoniae challenge, especially long-term T and B cell immune responses. Moreover, we found that the PST preferentially induced T helper (Th) responses toward Th2 or T follicular helper (Tfh) cells and, importantly, that the responses were mediated through antigen-presenting cells via activating a peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway. Thus, these data indicate that PST can be used as an effective and safe mucosal vaccine adjuvant against S. pneumoniae infection. STATE OF SIGNIFICANCE: In this study, we suggested the nanoparticle forming adjuvant, PST works as an effective adjuvant for the pneumococcal vaccine, PspA. The PspA subunit vaccine together with PST adjuvant efficiently induced protective immunity, even in the long-term memory responses, against Streptococcus pneumoniae lethal challenge. We found that PspA with PST adjuvant induced dendritic cell activation followed by follicular helper T cell responses through PPAR-γ pathway resulting long-term memory antibody-producing cells. Consequently, in this paper, we suggest the mechanism for safe nanoparticle forming subunit vaccine adjuvant against pneumococcal infection.
Collapse
|
7
|
Parmar N, Chandrakar P, Vishwakarma P, Singh K, Mitra K, Kar S. Leishmania donovani Exploits Tollip, a Multitasking Protein, To Impair TLR/IL-1R Signaling for Its Survival in the Host. THE JOURNAL OF IMMUNOLOGY 2018; 201:957-970. [DOI: 10.4049/jimmunol.1800062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
|