1
|
Pan Y, Zhang X, Geng H, Yu Y, Liu J, Li M, Yang H, Yuan Y, Xu Y, Wu Y, Wu G, Ma X, Cheng L. Increased Nasal Blimp1 + Treg Cells After Sublingual Immunotherapy Reflect the Efficacy of Treatment in Allergic Rhinitis. Adv Ther 2024; 41:1698-1710. [PMID: 38443650 DOI: 10.1007/s12325-024-02819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Allergen-specific immunotherapy (AIT) plays a pivotal role in altering the immune status and tissue responses in allergic rhinitis (AR). This study focuses on the impact of sublingual immunotherapy (SLIT) involving dust mite drops, exploring the modulation of regulatory T cells (Treg) and their specific marker, BLIMP1, in the nasal mucosa. METHODS Immune cells were isolated from nasal lavage fluid of patients with AR undergoing SLIT (n = 94). Treg cells were analyzed for BLIMP1 expression, and chemokine levels associated with Treg recruitment were assessed using Luminex assay. Patients were categorized on the basis of SLIT efficacy and followed for changes after discontinuation. RESULTS SLIT induced a significant increase in nasal Treg cells (7.09 ± 2.59% vs. 0.75 ± 0.27%, P < 0.0001). BLIMP1 expression in Treg cells notably increased after SLIT (0.36 ± 0.22% to 16.86 ± 5.74%, P < 0.0001). Ineffective SLIT cases exhibited lower levels of nasal Treg and Blimp1 + Treg cells (both P < 0.0001). Receiver operating characteristic (ROC) analysis confirmed their potential as efficacy predictors (AUC = 0.908 and 0.968, respectively). SLIT discontinuation led to a significant reduction in Treg and Blimp1 + Treg cells (P < 0.001), emphasizing their maintenance during treatment. Pro-inflammatory cytokines decreased (P < 0.001), while CCL2 associated with Treg recruitment increased (P = 0.0015). CONCLUSION Elevated nasal Blimp1 + Treg cells serve as a predictive biomarker for SLIT responsiveness in pediatric AR. Their influence on immunotherapy effectiveness contributes to a nuanced understanding of SLIT mechanisms, allowing for disease stratification and personalized treatment plans. This study offers scientific support for predicting SLIT efficacy, enhancing the prospects of improved treatment outcomes in AR.
Collapse
Affiliation(s)
- Yue Pan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Xinxin Zhang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huanting Geng
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yan Yu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Jianyong Liu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Menglin Li
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huijun Yang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yifang Yuan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yao Xu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yujia Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Geping Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China.
- Office of Science Education, Zhangjiagang Hospital Affiliated to Soochow University, 68 West Jiyang Road, Suzhou, 215000, China.
| | - Xingkai Ma
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
- Information Center, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Aviña AE, De Paz D, Huang SC, Chen KH, Chang YC, Lee CM, Lin CH, Wei FC, Wang AYL. IL-10 modified mRNA monotherapy prolongs survival after composite facial allografting through the induction of mixed chimerism. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:610-627. [PMID: 36910717 PMCID: PMC9996371 DOI: 10.1016/j.omtn.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Vascularized composite allotransplantation has great potential in face transplantation by supporting functional restoration following tissue grafting. However, the need for lifelong administration of immunosuppressive drugs still limits its wide use. Modified mRNA (modRNA) technology provides an efficient and safe method to directly produce protein in vivo. Nevertheless, the use of IL-10 modRNA-based protein replacement, which exhibits anti-inflammatory properties, has not been shown to prolong composite facial allograft survival. In this study, IL-10 modRNA was demonstrated to produce functional IL-10 protein in vitro, which inhibited pro-inflammatory cytokines and in vivo formation of an anti-inflammatory environments. We found that without any immunosuppression, C57BL/6J mice with fully major histocompatibility complex (MHC)-mismatched facial allografts and local injection of IL-10 modRNA had a significantly prolonged survival rate. Decreased lymphocyte infiltration and pro-inflammatory T helper 1 subsets and increased anti-inflammatory regulatory T cells (Tregs) were seen in IL-10 modRNA-treated mice. Moreover, IL-10 modRNA induced multilineage chimerism, especially the development of donor Treg chimerism, which protected allografts from destruction because of recipient alloimmunity. These results support the use of monotherapy based on immunomodulatory IL-10 cytokines encoded by modRNA, which inhibit acute rejection and prolong allograft survival through the induction of donor Treg chimerism.
Collapse
Affiliation(s)
- Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Clinical Fellow, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital; Chang Gung University and Medical College, Taoyuan 333, Taiwan
| | - Dante De Paz
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Department of Head and Neck Surgery, National Police Hospital, Lima 15072, Peru
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital, New Taipei 236, Taiwan.,Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Hung Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chin-Ming Lee
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chia-Hsien Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Guo H, Wang M, Wang B, Guo L, Cheng Y, Wang Z, Sun YQ, Wang Y, Chang YJ, Huang XJ. PRDM1 Drives Human Primary T Cell Hyporesponsiveness by Altering the T Cell Transcriptome and Epigenome. Front Immunol 2022; 13:879501. [PMID: 35572579 PMCID: PMC9097451 DOI: 10.3389/fimmu.2022.879501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
T cell hyporesponsiveness is crucial for the functional immune system and prevents the damage induced by alloreactive T cells in autoimmune pathology and transplantation. Here, we found low expression of PRDM1 in T cells from donor and recipients both related to the occurrence of acute graft-versus-host disease (aGVHD). Our systematic multiomics analysis found that the transcription factor PRDM1 acts as a master regulator during inducing human primary T cell hyporesponsiveness. PRDM1-overexpression in primary T cells expanded Treg cell subset and increased the expression level of FOXP3, while decreased expression had the opposite effects. Moreover, the binding motifs of key T cell function regulators, such as FOS, JUN and AP-1, were enriched in PRDM1 binding sites and that PRDM1 altered the chromatin accessibility of these regions. Multiomics analysis showed that PRDM1 directly upregulated T cell inhibitory genes such as KLF2 and KLRD1 and downregulated the T cell activation gene IL2, indicating that PRDM1 could promote a tolerant transcriptional profile. Further analysis showed that PRDM1 upregulated FOXP3 expression level directly by binding to FOXP3 upstream enhancer region and indirectly by upregulating KLF2. These results indicated that PRDM1 is sufficient for inducing human primary T cell hyporesponsiveness by transcriptomic and epigenetic manners.
Collapse
Affiliation(s)
- Huidong Guo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bixia Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Guo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yifei Cheng
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhidong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China.,Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies (2019RU029), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Xiao Y, Qureischi M, Dietz L, Vaeth M, Vallabhapurapu SD, Klein-Hessling S, Klein M, Liang C, König A, Serfling E, Mottok A, Bopp T, Rosenwald A, Buttmann M, Berberich I, Beilhack A, Berberich-Siebelt F. Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity. J Exp Med 2021; 218:152124. [PMID: 32986812 PMCID: PMC7953626 DOI: 10.1084/jem.20181853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/22/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modification with SUMO is known to regulate the activity of transcription factors, but how SUMOylation of individual proteins might influence immunity is largely unexplored. The NFAT transcription factors play an essential role in antigen receptor-mediated gene regulation. SUMOylation of NFATc1 represses IL-2 in vitro, but its role in T cell-mediated immune responses in vivo is unclear. To this end, we generated a novel transgenic mouse in which SUMO modification of NFATc1 is prevented. Avoidance of NFATc1 SUMOylation ameliorated experimental autoimmune encephalomyelitis as well as graft-versus-host disease. Elevated IL-2 production in T cells promoted T reg expansion and suppressed autoreactive or alloreactive immune responses. Mechanistically, increased IL-2 secretion counteracted IL-17 and IFN-γ expression through STAT5 and Blimp-1 induction. Then, Blimp-1 repressed IL-2 itself, as well as the induced, proliferation-associated survival factor Bcl2A1. Collectively, these data demonstrate that prevention of NFATc1 SUMOylation fine-tunes T cell responses toward lasting tolerance. Thus, targeting NFATc1 SUMOylation presents a novel and promising strategy to treat T cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yin Xiao
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Musga Qureischi
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Medicine II, Center for Interdisciplinary Clinical Research, University Hospital Wuerzburg, Wuerzburg, Germany.,Graduate School of Life Sciences, University of Wuerzburg, Wuerzburg, Germany
| | - Lena Dietz
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Vaeth
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Stefan Klein-Hessling
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Molecular Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Anika König
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Edgar Serfling
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Molecular Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Mottok
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center, University of Mainz, Mainz, Germany.,German Cancer Consortium, University Medical Center, University of Mainz, Mainz, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ingolf Berberich
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II, Center for Interdisciplinary Clinical Research, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
5
|
Human Wharton's Jelly Mesenchymal Stem Cell-Mediated Sciatic Nerve Recovery Is Associated with the Upregulation of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21176310. [PMID: 32878186 PMCID: PMC7504196 DOI: 10.3390/ijms21176310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
The acceleration of peripheral nerve regeneration is crucial for functional nerve recovery. Our previous study demonstrated that human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSC) promote sciatic nerve recovery and regeneration via the direct upregulation and release of neurotrophic factors. However, the immunomodulatory role of hWJ-MSC in sciatic nerve recovery remains unclear. The effects of hWJ-MSC on innate immunity, represented by macrophages, natural killer cells, and dendritic cells, as well as on adaptive immunity, represented by CD4+ T, CD8+ T, B, and regulatory T cells (Tregs), were examined using flow cytometry. Interestingly, a significantly increased level of Tregs was detected in blood, lymph nodes (LNs), and nerve-infiltrating cells on POD7, 15, 21, and 35. Anti-inflammatory cytokines, such as IL-4 and IL-10, were significantly upregulated in the LNs and nerves of hWJ-MSC-treated mice. Treg depletion neutralized the improved effects of hWJ-MSC on sciatic nerve recovery. In contrast, Treg administration promoted the functional recovery of five-toe spread and gait stance. hWJ-MSC also expressed high levels of the anti-inflammatory cytokines TGF-β and IL-35. This study indicated that hWJ-MSC induce Treg development to modulate the balance between pro- and anti-inflammation at the injured sciatic nerve by secreting higher levels of anti-inflammatory cytokines.
Collapse
|
6
|
Vascularized composite allotransplantation versus solid organ transplantation: innate-adaptive immune interphase. Curr Opin Organ Transplant 2020; 24:714-720. [PMID: 31577596 DOI: 10.1097/mot.0000000000000705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA), a life-enhancing treatment for patients with complex tissue defects, trauma or illness, expounds upon the foundation of solid organ transplantation (SOT), the gold standard in end-stage organ failure. As innate and adaptive immunity remain the fundamental concern, this review highlights divergent immunobiology responses in VCA and SOT recipients. RECENT FINDINGS Host innate immune activation drives peritransplant tissue ischemia-reperfusion injury (IRI). Despite the direct relationship between ischemia-reperfusion (IR)-stress and cell-mediated acute rejection, the mechanism of how IRI may affect VCA loss needs investigation. With skin grafts being highly immunogenic, the incidence of cell-mediated rejection is higher in VCA than SOT; whereas ex-vivo perfusion may exert cytoprotection against IRI in VCA and SOT. New treatment concepts, such as topical immunosuppression or cell-based tolerogenic therapies, may avoid systemic immunosuppression in VCA. Although antibody-mediated rejection is relatively rare in VCA and its disease seems to be distinct from that in SOT, little is known as to whether and how IRI may influence humoral immune rejection cascade in VCA or SOT. SUMMARY Further understanding of the innate-adaptive immune crosstalk should contribute to much needed development of novel therapies to improve VCA outcomes, based on strategies established in SOT.
Collapse
|
7
|
Wei T, Zhong W, Li Q. Role of heterogeneous regulatory T cells in the tumor microenvironment. Pharmacol Res 2020; 153:104659. [PMID: 31982490 DOI: 10.1016/j.phrs.2020.104659] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Tregs) modulate ongoing immune responses to prevent autoimmunity in healthy bodies and inhibit effective anti-tumor immunity responses in tumor patients, leading to tumor progression. The function of Tregs in tumor immunity suggests that elimination of Tregs in the host may enhance the anti-tumor immune response. Despite the success of strategies for depleting Tregs in tumor-bearing patients, the overall clinical efficacy is limited and accompanied by undesirable side effects. The present review describes the diverse anti-tumor roles and differentiation mechanisms of heterogeneous Tregs and proposes methods for modulating them in the tumor microenvironment. This information is critical for improving clinical outcomes and preventing adverse effects in cancer patients receiving immunotherapy targeting Tregs.
Collapse
Affiliation(s)
- Ting Wei
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong, China.
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Zhang X, Lv X, Chen M, Liu H. Analysis of Blimp-1 and PD-1/PD-L1 Immune Checkpoint in an Autoimmune Thyroiditis Animal Model. Int J Endocrinol 2020; 2020:6543593. [PMID: 32351559 PMCID: PMC7178515 DOI: 10.1155/2020/6543593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE B lymphocyte-induced maturation protein 1 (Blimp-1) and programmed cell death protein 1 (PD-1) have opposing roles in the development of T cells; however, the mechanism of autoimmune thyroiditis- (AIT-) associated abortion is unclear. The present study investigated the expression of Blimp-1 and PD-1/PD-ligand 1 (PD-L1) in AIT-associated pregnancy loss and elucidated the related signaling pathway involving in the inflammatory response. METHODS An experimental fetal loss model with autoimmune thyroiditis was established after murine thyroglobulin- (mTg-) immunized CBA/J female mice mating with Balb/c males. ELISA was employed to investigate the TgAb level in the serum of CBA/J female mice. The expression of Blimp-1, PD-1/PD-L1, mammalian target protein rapamycin (mTOR), and Foxp3 proteins in the placenta and spleen was detected through immunofluorescence staining and western blotting. RESULTS ELISA indicated that the serum TgAb level in the mTg group was higher than that in the control group (P < 0.001). Fetal resorption rates increased in the mTg group compared with those in the control group (45.63% vs. 3.1%, P < 0.05). Blimp-1 levels in the placenta and spleen were higher in the AIT-related miscarriage group than in the control group. However, the expression of PD-1/PD-L1 and Foxp3 was significantly decreased in the placenta and spleen in the AIT-related miscarriage group. CONCLUSION Blimp-1 participates in the pathogenesis of autoimmune thyroid disease-associated pregnancy loss through the inflammatory immune response, which is potentially mediated through the PD-1/PD-L1 signaling pathway.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoshu Lv
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengya Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haixia Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Characterization data for T cell-specific Blimp-1 transgenic C57BL/6 mice. Data Brief 2018; 19:117-127. [PMID: 29892625 PMCID: PMC5992980 DOI: 10.1016/j.dib.2018.04.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
This article is the first to provide characterization data regarding naive C57BL/6 transgenic mice with overexpression of B lymphocyte-induced maturation protein 1 (Blimp-1) under a T cell-specific pLCK promoter. The data presented are related to phenotype, Blimp-1 overexpression levels, T cell development and T cell proliferation for Blimp-1 transgenic mice. For further Blimp-1 overexpressed T cell findings regarding skin allotransplantation, please refer to the research article “Blimp-1 prolongs allograft survival without regimen via influencing T cell development in favor of regulatory T cells while suppressing Th1” (Wang et al., 2018) [1].
Collapse
|