1
|
Wu B, Koehler AN, Westcott PMK. New opportunities to overcome T cell dysfunction: the role of transcription factors and how to target them. Trends Biochem Sci 2024; 49:1014-1029. [PMID: 39277450 DOI: 10.1016/j.tibs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.
Collapse
Affiliation(s)
- Bocheng Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
2
|
Rocha SM, Gustafson DL, Safe S, Tjalkens RB. Comparative safety, pharmacokinetics, and off-target assessment of 1,1-bis(3'-indolyl)-1-( p-chlorophenyl) methane in mouse and dog: implications for therapeutic development. Toxicol Res (Camb) 2024; 13:tfae059. [PMID: 38655145 PMCID: PMC11033559 DOI: 10.1093/toxres/tfae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The modified phytochemical derivative, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12), has been identified as a potential therapeutic platform based on its capacity to improve disease outcomes in models of neurodegeneration and cancer. However, comprehensive safety studies investigating pathology and off-target binding have not been conducted. To address this, we administered C-DIM12 orogastrically to outbred male CD-1 mice for 7 days (50 mg/kg/day, 200 mg/kg/day, and 300 mg/kg/day) and investigated changes in hematology, clinical chemistry, and whole-body tissue pathology. We also delivered a single dose of C-DIM12 (1 mg/kg, 5 mg/kg, 25 mg/kg, 100 mg/kg, 300 mg/kg, 1,000 mg/kg) orogastrically to male and female beagle dogs and investigated hematology and clinical chemistry, as well as plasma pharmacokinetics over 48-h. Consecutive in-vitro off-target binding through inhibition was performed with 10 μM C-DIM12 against 68 targets in tandem with predictive off-target structural binding capacity. These data show that the highest dose C-DIM12 administered in each species caused modest liver pathology in mouse and dog, whereas lower doses were unremarkable. Off-target screening and predictive modeling of C-DIM12 show inhibition of serine/threonine kinases, calcium signaling, G-protein coupled receptors, extracellular matrix degradation, and vascular and transcriptional regulation pathways. Collectively, these data demonstrate that low doses of C-DIM12 do not induce pathology and are capable of modulating targets relevant to neurodegeneration and cancer.
Collapse
Affiliation(s)
- Savannah M Rocha
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1680 Campus Delivery Fort Collins, CO 80523, USA
| | - Daniel L Gustafson
- Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery Fort Collins, CO 80523, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M School of Veterinary, Medicine & Biomedical Sciences, 4466 TAMU College Station, TX 77843-4466, USA
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1680 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Solís-Barbosa MA, Santana E, Muñoz-Torres JR, Segovia-Gamboa NC, Patiño-Martínez E, Meraz-Ríos MA, Samaniego R, Sánchez-Mateos P, Sánchez-Torres C. The nuclear receptor Nurr1 is preferentially expressed in human pro-inflammatory macrophages and limits their inflammatory profile. Int Immunol 2024; 36:111-128. [PMID: 38066638 DOI: 10.1093/intimm/dxad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/02/2023] [Indexed: 02/22/2024] Open
Abstract
Nurr1 is a member of the orphan nuclear receptor family NR4A (nuclear receptor subfamily 4 group A) that modulates inflammation in several cell lineages, both positively and negatively. Macrophages are key regulators of inflammatory responses, yet information about the role of Nurr1 in human macrophages is scarce. Here we examined Nurr1 expression and activity in steady state and activated human macrophages. Pro- and anti-inflammatory macrophages were generated in vitro by culture of blood monocytes with granulocyte/macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), respectively. Nurr1 expression was predominant in macrophages with the pro-inflammatory phenotype. Nurr1 activation with the agonists 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12) or isoxazolo-pyridinone 7e (IP7e) did not globally modify the polarization status of pro-inflammatory macrophages, but they decreased their production of TNF, IL-1β, IL-6, IL-8, IL-12 p40, CCL2, IFN-β, and reactive oxygen species, with variable potencies. Conversely, Nurr1 deficient macrophages increased the expression of transcripts encoding inflammatory mediators, particularly that of IL6, IFNB1, and CCL2. Mechanistically, endogenous Nurr1 interacted with NF-κB p65 in basal conditions and upon lipopolysaccharide (LPS)-mediated activation. C-DIM12 stabilized those complexes in cells exposed to LPS and concurrently decreased NF-κB transcriptional activity and p65 nuclear translocation. Expression of high levels of Nurr1 was associated with a subset of dermal macrophages that display enhanced levels of TNF and lower expression of the anti-inflammatory marker CD163L1 in skin lesions from patients with bullous pemphigoid (BP), a chronic inflammatory autoimmune blistering disorder. These results suggest that Nurr1 expression is linked with the pro-inflammatory phenotype of human macrophages, both in vivo and in vitro, where it may constitute a brake to attenuate the synthesis of inflammatory mediators.
Collapse
Affiliation(s)
- Miguel A Solís-Barbosa
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - Eduardo Santana
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - José R Muñoz-Torres
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - Norma C Segovia-Gamboa
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - Eduardo Patiño-Martínez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - Marco A Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - Rafael Samaniego
- Confocal Microscopy Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Paloma Sánchez-Mateos
- Immuno-Oncology Laboratory, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| |
Collapse
|
4
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J. 3,3'-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 2023; 23:180. [PMID: 37633886 PMCID: PMC10464192 DOI: 10.1186/s12935-023-03031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | | | | | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, Ciudad de México, 14380, Mexico
| | - Sergio Alberto Bernal-Chavez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lashyn Kiyekbayeva
- Pharmaceutical School, Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Public Health and Nursing, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, 23100, Turkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi, 0162, Georgia
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | |
Collapse
|
5
|
Sun W, Ma J, Chen M, Zhang W, Xu C, Nan Y, Wu W, Mao X, Cheng X, Cai H, Zhang J, Xu H, Wang Y. 4-Iodo-6-phenylpyrimidine (4-IPP) suppresses fibroblast-like synoviocyte- mediated inflammation and joint destruction associated with rheumatoid arthritis. Int Immunopharmacol 2023; 115:109714. [PMID: 36657337 DOI: 10.1016/j.intimp.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic immune-mediated inflammatory disease that significantly impacts patients' quality of life. Fibroblast-like synovial cells (FLSs) within the synovial intima exhibit "tumor-like" properties such as increased proliferation, migration, and invasion. Activation of FLSs and secretion of pro-inflammation factors result in pannus formation and cartilage destruction. As an inhibitor of the cytokine, macrophage migration inhibitory factor (MIF), 4-Iodo-6-phenylpyrimidine (4-IPP) has been shown to reduce cell proliferation, migration, invasion, and the secretion of pro-inflammatory mediators in a variety of diseases. However, the usefulness of 4-IPP for RA treatment has not been assessed and was the purpose of this study. In vitro, 4-IPP was demonstrated to inhibit proliferation, migration, and invasion of RA FLSs, as well as the expression of pro-inflammatory cytokines. 4-IPP was also shown to inhibit MIF-induced phosphorylation of ERK, JNK, and p38, as well as reduce expression of COX2 and PGE2. In order to efficiently deliver 4-IPP to anatomical RA sites, we developed lactic-co-glycolic acid (PLGA) nanospheres, which not only protected 4-IPP from degradation but also controlled the release of 4-IPP. 4-IPP/PLGA nanospheres had potent anti-inflammatory activity and a high degree of biosafety. Results showed that local 4-IPP concentration was increased by nanosphere delivery, effectively reducing the inflammatory microenvironment as well as synovial inflammation, joint swelling, and cartilage destruction in a collagen-induced rheumatoid arthritis (CIA) rat model. Therefore, 4-IPP nanospheres are a sustained-release delivery system that may be an effective therapeutic strategy for RA treatment.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jinquan Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chunxiang Xu
- Department of Nursing, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xingxing Mao
- Department of Orthopaedics, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226001, China
| | - Xi Cheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
6
|
A Nurr1 ligand C-DIM12 attenuates brain inflammation and improves functional recovery after intracerebral hemorrhage in mice. Sci Rep 2022; 12:11009. [PMID: 35773404 PMCID: PMC9246855 DOI: 10.1038/s41598-022-15178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
We have previously reported that amodiaquine, a compound that binds to the ligand-binding domain of a nuclear receptor Nurr1, attenuates inflammatory responses and neurological deficits after intracerebral hemorrhage (ICH) in mice. 1,1-Bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) is another Nurr1 ligand that recognizes a domain of Nurr1 different from the ligand-binding domain. In the present study, mice were treated daily with C-DIM12 (50 or 100 mg/kg, p.o.) or amodiaquine (40 mg/kg, i.p.), or twice daily with 1400 W (20 mg/kg, i.p.), an inducible nitric oxide synthase (iNOS) inhibitor, from 3 h after ICH induction by microinjection of collagenase into the striatum. C-DIM12 improved the recovery of neurological function and prevented neuron loss in the hematoma, while suppressed activation of microglia/macrophages and expression of inflammatory mediators interleukin-6 and CC chemokine ligand 2. In addition, C-DIM12 as well as amodiaquine preserved axonal structures in the internal capsule and axonal transport function. We also found that C-DIM12 and amodiaquine suppressed the increases of iNOS mRNA expression after ICH. Moreover, 1400 W improved neurological function and prevented neuron loss, activation of microglia/macrophages and axonal transport dysfunction. These results suggest that suppression of iNOS induction contributes to several features of the therapeutic effects of Nurr1 ligands.
Collapse
|
7
|
Lilley CM, Alarcon A, Ngo MH, Araujo JS, Marrero L, Mix KS. Orphan Nuclear Receptor NR4A2 Is Constitutively Expressed in Cartilage and Upregulated in Inflamed Synovium From hTNF-Alpha Transgenic Mice. Front Pharmacol 2022; 13:835697. [PMID: 35529439 PMCID: PMC9067626 DOI: 10.3389/fphar.2022.835697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Orphan nuclear receptor 4A2 (NR4A2/Nurr1) is a constitutively active transcription factor with potential roles in the onset and progression of inflammatory arthropathies. NR4A2 is overexpressed in synovium and cartilage from individuals with rheumatoid arthritis (RA), psoriatic arthritis, and osteoarthritis. This study documents the expression and tissue localization of NR4A2 and upstream regulator nuclear factor kappa B (NF-κB) in the human tumor necrosis factor-alpha (hTNF-α) transgenic mouse model of RA. Since TNF-α is a potent inducer of NR4A2 in vitro, we hypothesized that NR4A2 would also be upregulated and active during disease progression in this model. Expression levels of NR4A2, related receptors NR4A1 (Nur77) and 3 (NOR1), and NF-κB1 transcripts were quantified by RT-qPCR in hTNF-α and wild-type joints at three stages of disease. The protein distribution of NR4A2 and NF-κB subunit RelA (p65) was analyzed by quantitative immunohistochemistry. Global gene expression of 88 RA-related genes was also screened and compared between groups. Consistent with previous reports on the hTNF-α model, transgenic mice exhibited significant weight loss and severely swollen paws by 19 weeks of age compared to age-matched wild-type controls. NR4A1-3 and NF-κB1 were constitutively expressed at disease onset and in healthy joints. NF-κB1 transcript levels increased 2-fold in hTNF-α paws with established disease (12 weeks), followed by a 2-fold increase in NR4A2 at the late disease stage (19 weeks). NR4A2 and RelA proteins were overexpressed in inflamed synovium prior to symptoms of arthritis, suggesting that gene expression changes documented in whole paws were largely driven by elevated expression in diseased synovium. Broader screening of RA-related genes by RT-qPCR identified several differentially expressed genes in hTNF-α joints including those encoding inflammatory cytokines and chemokines, matrix-degrading enzymes and inhibitors, cell surface receptors, intracellular signaling proteins and transcription factors. Consensus binding sites for NR4A receptors and NF-κB1 were enriched in the promoters of differentially expressed genes suggesting central roles for these transcription factors in this model. This study is the first comprehensive analysis of NR4A2 in an animal model of RA and validates the hTNF-α model for testing of small molecules and genetic strategies targeting this transcription factor.
Collapse
Affiliation(s)
- Cullen M Lilley
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| | - Andrea Alarcon
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| | - My-Huyen Ngo
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| | - Jackeline S Araujo
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| | - Luis Marrero
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Kimberlee S Mix
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| |
Collapse
|
8
|
Wang RH, Dai XJ, Wu H, Wang MD, Deng R, Wang Y, Bu YH, Sun MH, Zhang H. Anti-Inflammatory Effect of Geniposide on Regulating the Functions of Rheumatoid Arthritis Synovial Fibroblasts via Inhibiting Sphingosine-1-Phosphate Receptors1/3 Coupling Gαi/Gαs Conversion. Front Pharmacol 2020; 11:584176. [PMID: 33363467 PMCID: PMC7753157 DOI: 10.3389/fphar.2020.584176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
The activated Gα protein subunit (Gαs) and the inhibitory Gα protein subunit (Gαi) are involved in the signal transduction of G protein coupled receptors (GPCRs). Moreover, the conversion of Gαi/Gαs can couple with sphingosine-1-phosphate receptors (S1PRs) and have a critical role in rheumatoid arthritis (RA). Through binding to S1PRs, sphingosine-1-phosphate (S1P) leads to activation of the pro-inflammatory signaling in rheumatoid arthritis synovial fibroblasts (RASFs). Geniposide (GE) can alleviate RASFs dysfunctions to against RA. However, its underlying mechanism of action in RA has not been elucidated so far. This study aimed to investigate whether GE could regulate the biological functions of MH7A cells by inhibiting S1PR1/3 coupling Gαi/Gαs conversion. We use RASFs cell line, namely MH7A cells, which were obtained from the patient with RA and considered to be the main effector cells in RA. The cells were stimulated with S1P (5 μmol/L) and then were treated with or without different inhibitors: Gαi inhibitor pertussis toxin (0.1 μg/mL), S1PR1/3 inhibitor VPC 23019 (5 μmol/L), Gαs activator cholera toxin (1 μg/mL) and GE (25, 50, and 100 μmol/L) for 24 h. The results showed that GE may inhibit the abnormal proliferation, migration and invasion by inhibiting the S1P-S1PR1/3 signaling pathway and activating Gαs or inhibiting Gαi protein in MH7A cells. Additionally, GE could inhibit the release of inflammatory factors and suppress the expression of cAMP, which is the key factor of the conversion of Gαi and Gαs. GE could also restore the dynamic balance of Gαi and Gαs by suppressing S1PR1/3 and inhibiting Gαi/Gαs conversion, in a manner, we demonstrated that GE inhibited the activation of Gα downstream ERK protein as well. Taken together, our results indicated that down-regulation of S1PR1/3-Gαi/Gαs conversion may play a critical role in the effects of GE on RA and GE could be an effective therapeutic agent for RA.
Collapse
Affiliation(s)
- Rong-Hui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xue-Jing Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Meng-Die Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan-Hong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ming-Hui Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Heng Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
9
|
Wang X, Aldrich CC. Development of an imidazole salt catalytic system for the preparation of bis(indolyl)methanes and bis(naphthyl)methane. PLoS One 2019; 14:e0216008. [PMID: 31022274 PMCID: PMC6483367 DOI: 10.1371/journal.pone.0216008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022] Open
Abstract
Imidazolium salts are shown to catalyze the rapid room temperature reaction of indoles or naphthol with aldehydes to provide bis(indolyl)methanes or bis(naphthol)methane in excellent yields and the reaction proceeds optimally in dichloromethane with no base additives. The reaction exhibits a broad substrate tolerance and occurs through nucleophilic activation of the indoles and naphthols through a cation-π interaction.
Collapse
Affiliation(s)
- Xu Wang
- Department of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| | - Courtney C. Aldrich
- Department of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|