1
|
Roy S, Sarkar T, Upadhye VJ, Chakraborty R. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl Biochem Biotechnol 2024; 196:4472-4643. [PMID: 37755640 DOI: 10.1007/s12010-023-04674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Fruit seeds are leftovers from a variety of culinary sectors. They are generally unutilized and contribute greatly to global disposals. These seeds not only possess various nutritional attributes but also have many heath-beneficial properties. One way to make use of these seeds is to extract their bioactive components and create fortified food items. Nowadays, researchers are highly interested in creating innovative functional meals and food components from these unconventional resources. The main objective of this manuscript was to determine the usefulness of seed powder from 70 highly consumed fruits, including Apple, Apricot, Avocado, Banana, Blackberry, Blackcurrant, Blueberry, Cherry, Common plum, Cranberry, Gooseberry, Jackfruit, Jamun, Kiwi, Lemon, Mahua, Mango, Melon, Olive, Orange, and many more have been presented. The nutritional attributes, phytochemical composition, health advantages, nanotechnology applications, and toxicity of these fruit seeds have been fully depicted. This study also goes into in-depth detailing on creating useful food items out of these seeds, such as bakery goods, milk products, cereal-based goods, and meat products. It also identifies enzymes purified from these seeds along with their biochemical applications and any research openings in this area.
Collapse
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | | | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Tuppo L, Alessandri C, Zaccaro L, Giangrieco I, Tamburrini M, Mari A, Ciardiello MA. Isolation, Characterization and IgE Binding of Two 2S Albumins of Pomegranate Seeds. Foods 2024; 13:1965. [PMID: 38998471 PMCID: PMC11241328 DOI: 10.3390/foods13131965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Literature reports suggest that the presence of proteins in pomegranate seeds is responsible for sensitization and IgE-mediated allergic reactions. The objective of this study was the analysis of a pomegranate seed extract and the isolation and characterization of proteins contained in high amounts. The extract characterization showed a protein profile with main bands at about 18 kDa and below 10 kDa upon SDS-PAGE, and molecules were recognized by specific IgEs upon immunoblotting. Then, two new 2S albumins, a monomeric and a heterodimeric one, were isolated by using classical biochemical methods. They were identified via direct protein sequencing and mass spectrometry, and their primary structure was analyzed and compared with homologous allergenic proteins via bioinformatics. In an Italian population of 703 suspected allergic patients, analyzed by using the FABER® test, the frequency of sensitization to the monomeric and heterodimeric 2S albumins was 1.7% and 0.28%, respectively. This study reports for the first time the isolation and characterization of two 2S albumins from pomegranate seeds. The clinical relevance of these molecules needs further investigation, for instance in populations having different exposures and allergy profiles.
Collapse
Affiliation(s)
- Lisa Tuppo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), 80131 Naples, Italy; (L.T.); (I.G.); (M.T.)
| | - Claudia Alessandri
- Associated Centers for Molecular Allergology (CAAM), 00100 Rome, Italy; (C.A.); (A.M.)
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 80131 Naples, Italy;
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), 80131 Naples, Italy; (L.T.); (I.G.); (M.T.)
| | - Maurizio Tamburrini
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), 80131 Naples, Italy; (L.T.); (I.G.); (M.T.)
| | - Adriano Mari
- Associated Centers for Molecular Allergology (CAAM), 00100 Rome, Italy; (C.A.); (A.M.)
| | - Maria Antonietta Ciardiello
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), 80131 Naples, Italy; (L.T.); (I.G.); (M.T.)
| |
Collapse
|
3
|
Zhang S, Baker MG. Pomegranate seed allergy in a child with multiple tree nut allergies. Ann Allergy Asthma Immunol 2023:S1081-1206(23)00119-9. [PMID: 36828175 DOI: 10.1016/j.anai.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Shouling Zhang
- Allergy & Asthma Center of Tuscaloosa, Tuscaloosa, Alabama; Elliot and Roslyn Jaffe Food Allergy Institute, Division of Pediatric Allergy & Immunology, Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mary Grace Baker
- Elliot and Roslyn Jaffe Food Allergy Institute, Division of Pediatric Allergy & Immunology, Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
4
|
Roccotiello E, Nicosia E, Pierdonà L, Marescotti P, Ciardiello MA, Giangrieco I, Mari A, Zennaro D, Dozza D, Brancucci M, Mariotti M. Tomato (Solanum lycopersicum L.) accumulation and allergenicity in response to nickel stress. Sci Rep 2022; 12:5432. [PMID: 35361841 PMCID: PMC8971441 DOI: 10.1038/s41598-022-09107-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Vegetables represent a major source of Ni exposure. Environmental contamination and cultural practices can increase Ni amount in tomato posing significant risk for human health. This work assesses the tomato (Solanum lycopersicum L.) response to Ni on the agronomic yield of fruits and the related production of allergens. Two cultivars were grown in pots amended with Ni 0, 30, 60, 120, and 300 mg kg−1, respectively. XRF and ICP-MS analyses highlighted the direct increase of fruit Ni content compared to soil Ni, maintaining a stable biomass. Leaf water content increased at Ni 300 mg kg−1. Total protein content and individual allergenic components were investigated using biochemical (RP-HPLC and N-terminal amino acid sequencing) and immunological (inhibition tests of IgE binding by SPHIAa assay on the FABER testing system) methodologies. Ni affected the fruit tissue concentration of pathogenesis-related proteins and relevant allergens (LTP, profilin, Bet v 1-like protein and TLP). This study elucidates for the first time that tomato reacts to exogenous Ni, uptaking the metal while changing its allergenic profiles, with potential double increasing of exposure risks for consumers. This evidence highlighted the importance of adequate choice of low-Ni tomato cultivars and practices to reduce Ni uptake by potentially contaminated matrices.
Collapse
Affiliation(s)
- Enrica Roccotiello
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy.
| | - Elena Nicosia
- Regione Liguria, Dipartimento Salute e Servizi Sociali, Settore Tutela della Salute negli Ambienti di Vita e di Lavoro Via Fieschi 17, Piano U8, 16121, Genoa, Italy
| | - Lorenzo Pierdonà
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16500, Prague, Czech Republic
| | - Pietro Marescotti
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | | | - Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy.,Allergy Data Laboratories (ADL), Latina, Italy
| | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy.,Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Danila Zennaro
- Allergy Data Laboratories (ADL), Latina, Italy.,Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Denise Dozza
- IREN Laboratori S.P.a, Via SS. Giacomo E Filippo 7, 16122, Genoa, Italy
| | | | - Mauro Mariotti
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
5
|
Ricciardi T, Giangrieco I, Alessandri C, Rafaiani C, Tuppo L, Tamburrini M, Digilio AF, Ciardiello MA, Mari A. Pattern of sensitization to Juniperus oxycedrus 4EF-hand polcalcin, Jun o 4, compared with the 2EF-hand grass homolog Phl p 7 in a general Italian population of subjects suffering from pollinosis. Clin Immunol 2021; 234:108894. [PMID: 34843986 DOI: 10.1016/j.clim.2021.108894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Cupressaceae pollen causes allergic reactions worldwide with long-lasting symptomatic periods. Currently, no cypress polcalcin is available for diagnostic purposes. With the aim to investigate the pattern of sensitization to a cypress polcalcin, a synthetic gene of Jun o 4, the Juniperus oxycedrus 4EF-hand polcalcin, was cloned and expressed in Escherichia coli. Its features were investigated in comparison with the grass 2EF-hand Phl p 7. Rhinitis was the symptom most frequently reported in a cohort of Italian patients sensitized to rJun o 4 and/or rPhl p 7. The detection of many pollen allergic patients sensitized to the cypress polcalcin, but negative to Phl p 7, indicates that Phl p 7 cannot be further considered a marker of sensitization towards all the polcalcins. A 4EF-hand cypress polcalcin claims the inclusion in allergy diagnostic tests. In addition, the sensitivity of polcalcins to gastrointestinal digestion is reported and discussed for the first time.
Collapse
Affiliation(s)
- Teresa Ricciardi
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy.
| | - Claudia Alessandri
- Allergy Data Laboratories (ADL), Latina, Italy; Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Chiara Rafaiani
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Lisa Tuppo
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy
| | | | | | | | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy; Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| |
Collapse
|
6
|
Stanly C, Kim H, Antonucci G, Fiume I, Guescini M, Kim KP, Ciardiello MA, Giangrieco I, Mari A, Pocsfalvi G. Crosstalk Between the Immune System and Plant-Derived Nanovesicles: A Study of Allergen Transporting. Front Bioeng Biotechnol 2021; 9:760730. [PMID: 34900959 PMCID: PMC8662998 DOI: 10.3389/fbioe.2021.760730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Nanometer-sized membrane-surrounded vesicles from different parts of plants including fruits are gaining increasing attention due to their anti-inflammatory and anticancer effects demonstrated by in vitro and in vivo studies, and as nanovectors for molecular delivery of exogenous substances. These nanomaterials are very complex and contain a diverse arsenal of bioactive molecules, such as nucleic acids, proteins, and lipids. Our knowledge about the transport of allergens in vesicles isolated from plant food is limited today. Methods: Here, to investigate the allergenicity of strawberry-derived microvesicles (MVs), nanovesicles (NVs), and subpopulations of NV, we have set up a multidisciplinary approach. The strategy combines proteomics-based protein identification, immunological investigations, bioinformatics, and data mining to gain biological insights useful to evaluate the presence of potential allergens and the immunoglobulin E (IgE) inhibitory activity of vesicle preparations. Results: Immunological test showed that several proteins of strawberry-derived vesicles compete for IgE binding with allergens spotted on the FABER biochip. This includes the known strawberry allergens Fra a 1, Fra a 3, and Fra a 4, and also other IgE-binding proteins not yet described as allergens in this food, such as gibberellin-regulated proteins, 2S albumin, pectate lyase, and trypsin inhibitors. Proteomics identified homologous sequences of the three strawberry allergens and their isoforms in total protein extract (TPE) but only Fra a 1 and Fra a 4 in the vesicle samples. Label-free quantitative proteomic analysis revealed no significant enrichment of these proteins in strawberry vesicles with respect to TPE. Conclusion: Immunological tests and bioinformatics analysis of proteomics data sets revealed that MVs and NVs isolated from strawberries can carry functional allergens their isoforms as well as proteins potentially allergenic based on their structural features. This should be considered when these new nanomaterials are used for human nutraceutical or biomedical applications.
Collapse
Affiliation(s)
- Christopher Stanly
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| | - Hyoseon Kim
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, South Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, South Korea
| | - Giuseppe Antonucci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Kyung Hee University, Yongin, South Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, South Korea
| | | | - Ivana Giangrieco
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Gabriella Pocsfalvi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| |
Collapse
|
7
|
Sudharson S, Kalic T, Hafner C, Breiteneder H. Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019-03/2021. Allergy 2021; 76:3359-3373. [PMID: 34310736 PMCID: PMC9290965 DOI: 10.1111/all.15021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
The WHO/IUIS Allergen Nomenclature Database (http://allergen.org) provides up‐to‐date expert‐reviewed data on newly discovered allergens and their unambiguous nomenclature to allergen researchers worldwide. This review discusses the 106 allergens that were accepted by the Allergen Nomenclature Sub‐Committee between 01/2019 and 03/2021. Information about protein family membership, patient cohorts, and assays used for allergen characterization is summarized. A first allergenic fungal triosephosphate isomerase, Asp t 36, was discovered in Aspergillus terreus. Plant allergens contained 1 contact, 38 respiratory, and 16 food allergens. Can s 4 from Indian hemp was identified as the first allergenic oxygen‐evolving enhancer protein 2 and Cic a 1 from chickpeas as the first allergenic group 4 late embryogenesis abundant protein. Among the animal allergens were 19 respiratory, 28 food, and 3 venom allergens. Important discoveries include Rap v 2, an allergenic paramyosin in molluscs, and Sal s 4 and Pan h 4, allergenic fish tropomyosins. Paramyosins and tropomyosins were previously known mainly as arthropod allergens. Collagens from barramundi, Lat c 6, and salmon, Sal s 6, were the first members from the collagen superfamily added to the database. In summary, the addition of 106 new allergens to the previously listed 930 allergens reflects the continuous linear growth of the allergen database. In addition, 17 newly described allergen sources were included.
Collapse
Affiliation(s)
- Srinidhi Sudharson
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christine Hafner
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
| | - Heimo Breiteneder
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
8
|
Yakhlef M, Giangrieco I, Ciardiello MA, Fiume I, Mari A, Souiki L, Pocsfalvi G. Potential allergenicity of Medicago sativa investigated by a combined IgE-binding inhibition, proteomics and in silico approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1182-1192. [PMID: 32790067 DOI: 10.1002/jsfa.10730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L) is one of the most planted crops worldwide primarily used to feed animals. The use of alfalfa in human diet as sprouts, infusions and nutritional supplements is rapidly gaining popularity. Despite this, allergenicity assessment of this novel plant food is largely lacking. RESULTS Here, leaf protein extract of alfalfa was studied using a combined proteomics, Immunoglobulin E (IgE)-binding inhibition assay and in silico approach to find potential allergens. We have identified and annotated 129 proteins using in-gel digestion proteomics and Blast2Go suit. A search against COMPARE database, using the identified proteins as query sequences, revealed high similarity with several allergenic proteins. The Single Point Highest Inhibition Achievable assay (SPHIAa) performed on the multiplex FABER® allergy testing system confirmed the in silico results and showed some additional potential allergens. This approach allowed the detection of proteins in alfalfa leaves cross-reacting with plant allergens from three different allergen families such as lipid transfer, thaumatin-like and Bet v 1-like protein families. In addition, the absence of structural determinants cross-reacting with seed storage allergenic proteins and with animal allergens was recorded. CONCLUSION This study reports for the first time potential allergenic proteins in alfalfa. The results suggest that this plant food can be safely introduced, as a protein-rich supplement, in the diet of patients allergic to animal food allergens. Allergic patients towards certain plant food allergens need to be careful about consuming alfalfa because they might have allergic symptoms. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marwa Yakhlef
- Laboratoire de Biologie, Eau et Environnement, Department of Biology, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et l'Univers, Université 8 Mai 1945 Guelma, Guelma, Algeria
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Maria A Ciardiello
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Immacolata Fiume
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy
- Associated Centre for Molecular Allergology, Rome, Italy
| | - Lynda Souiki
- Department of Biology, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et l'Univers, Université 8 Mai 1945 Guelma, Guelma, Algeria
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| |
Collapse
|
9
|
Structural Characterization of Act c 10.0101 and Pun g 1.0101-Allergens from the Non-Specific Lipid Transfer Protein Family. Molecules 2021; 26:molecules26020256. [PMID: 33419110 PMCID: PMC7825401 DOI: 10.3390/molecules26020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/19/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins’ sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.
Collapse
|
10
|
Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tuppo L, Giangrieco I, Ricciardi T, Tamburrini M, Ciardiello MA, Mari A. Molecular approach to a patient's tailored diagnosis of the oral allergy syndrome. Clin Transl Allergy 2020; 10:22. [PMID: 32551040 PMCID: PMC7298840 DOI: 10.1186/s13601-020-00329-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Oral allergy syndrome (OAS) is one of the most common IgE-mediated allergic reactions. It is characterized by a number of symptoms induced by the exposure of the oral and pharyngeal mucosa to allergenic proteins belonging to class 1 or to class 2 food allergens. OAS occurring when patients sensitized to pollens are exposed to some fresh plant foods has been called pollen food allergy syndrome (PFAS). In the wake of PFAS, several different associations of allergenic sources have been progressively proposed and called syndromes. Molecular allergology has shown that these associations are based on IgE co-recognition taking place between homologous allergens present in different allergenic sources. In addition, the molecular approach reveals that some allergens involved in OAS are also responsible for systemic reactions, as in the case of some food Bet v 1-related proteins, lipid transfer proteins and gibberellin regulated proteins. Therefore, in the presence of a convincing history of OAS, it becomes crucial to perform a patient's tailored molecule-based diagnosis in order to identify the individual IgE sensitization profile. This information allows the prediction of possible cross-reactions with homologous molecules contained in other sources. In addition, it allows the assessment of the risk of developing more severe symptoms on the basis of the features of the allergenic proteins to which the patient is sensitized. In this context, we aimed to provide an overview of the features of relevant plant allergenic molecules and their involvement in the clinical onset of OAS. The value of a personalized molecule-based approach to OAS diagnosis is also analyzed and discussed.
Collapse
Affiliation(s)
- Claudia Alessandri
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Rosetta Ferrara
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Maria Livia Bernardi
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Danila Zennaro
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Lisa Tuppo
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Ivana Giangrieco
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Teresa Ricciardi
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | | | | | - Adriano Mari
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| |
Collapse
|
11
|
Tuppo L, Alessandri C, Giangrieco I, Ciancamerla M, Rafaiani C, Tamburrini M, Ciardiello MA, Mari A. Isolation of cypress gibberellin-regulated protein: Analysis of its structural features and IgE binding competition with homologous allergens. Mol Immunol 2019; 114:189-195. [DOI: 10.1016/j.molimm.2019.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
|
12
|
Giangrieco I, Ricciardi T, Alessandri C, Farina L, Crescenzo R, Tuppo L, Ciancamerla M, Rafaiani C, Bernardi ML, Digilio AF, Cobucci-Ponzano B, Tamburrini M, Mari A, Ciardiello MA. ENEA, a peach and apricot IgE-binding protein cross-reacting with the latex major allergen Hev b 5. Mol Immunol 2019; 112:347-357. [PMID: 31254775 DOI: 10.1016/j.molimm.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Peach and apricot can cause allergic reactions with symptoms ranging from mild to very severe, including anaphylaxis. Sometimes subjects allergic to fruits of the Prunus genus have been reported to be also allergic to rubber latex products. The objective of this study is the characterization of a newly identified peach and apricot protein showing similarities with the allergens Hev b 5 from rubber latex and Man e 5 from manioc. This protein has been named ENEA on the basis of the single letter amino acid code of the first four N-terminal residues of the isolated molecule. It has been found in very variable amounts in different peach cultivars and batches. ENEA was isolated from peach pulp extracts by chromatographic separations and identified by direct protein sequencing. At that time, the full length sequence was available only for the homologous protein of the taxonomically closely related apricot, which was produced as a recombinant molecule in Escherichia coli. The following availability of the full length sequence of peach ENEA revealed a very high identity (97%) with the apricot homolog. Similarly to Hev b 5 and to Man e 5, the structural characterization indicated that ENEA is an intrinsically disordered protein. The immunological properties, investigated by dot blotting, the ABA system and the FABER test, showed that ENEA is recognized by specific IgE of allergic patients. In a selected population of 31 patients reporting allergic reactions to peach fruit and/or IgE positive to Hev b 5, 28 and 27 subjects resulted co-sensitized to rENEA and Hev b 5 in the ABA and ISAC test, respectively. In a random population of 3305 suspected allergic patients, analyzed with the FABER test, 17 of them were sensitized to rENEA and 10 of them were also positive to Hev b 5. In addition, both the natural molecule from peach and the recombinant protein of apricot partially inhibited the IgE binding to Hev b 5. In conclusion, a new peach and apricot IgE-binding protein, cross-reacting with the major latex allergen Hev b 5, has been identified. Its variable concentration in the fruit might explain some occasionally occurring allergic reactions. The apricot molecule has recently been registered by the WHO/IUIS Allergen Nomenclature Sub-Committee with the allergen name Pru ar 5. The recombinant form of apricot ENEA, now available, will contribute to allergy diagnosis.
Collapse
Affiliation(s)
- Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy
| | - Teresa Ricciardi
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy
| | - Claudia Alessandri
- Allergy Data Laboratories (ADL), Latina, Italy; Associated Centers for Molecular Allergology (CAAM), Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Lucia Farina
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Roberta Crescenzo
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Lisa Tuppo
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy; Allergy Data Laboratories (ADL), Latina, Italy
| | | | - Chiara Rafaiani
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Maria Livia Bernardi
- Allergy Data Laboratories (ADL), Latina, Italy; Associated Centers for Molecular Allergology (CAAM), Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | | | | | | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy; Associated Centers for Molecular Allergology (CAAM), Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | |
Collapse
|
13
|
Chitinases as Food Allergens. Molecules 2019; 24:molecules24112087. [PMID: 31159327 PMCID: PMC6600546 DOI: 10.3390/molecules24112087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
Food allergies originate from adverse immune reactions to some food components. Ingestion of food allergens can cause effects of varying severity, from mild itching to severe anaphylaxis reactions. Currently there are no clues to predict the allergenic potency of a molecule, nor are cures for food allergies available. Cutting-edge research on allergens is aimed at increasing information on their diffusion and understanding structure-allergenicity relationships. In this context, purified recombinant allergens are valuable tools for advances in the diagnostic and immunotherapeutic fields. Chitinases are a group of allergens often found in plant fruits, but also identified in edible insects. They are classified into different families and classes for which structural analyses and identification of epitopes have been only partially carried out. Moreover, also their presence in common allergen databases is not complete. In this review we provide a summary of the identified food allergenic chitinases, their main structural characteristics, and a clear division in the different classes.
Collapse
|
14
|
Goodman RE, Breiteneder H. The WHO/IUIS Allergen Nomenclature. Allergy 2019; 74:429-431. [PMID: 30515836 DOI: 10.1111/all.13693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Richard E. Goodman
- Food Allergy Research and Resource Program; University of Nebraska; Lincoln Nebraska
- Chair of the WHO/IUIS Allergen Nomenclature Sub-Committee; Lincoln Nebraska
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
- Member of the WHO/IUIS Allergen Nomenclature Sub-Committee; Vienna Austria
| |
Collapse
|
15
|
Klingebiel C, Chantran Y, Arif‐Lusson R, Ehrenberg AE, Östling J, Poisson A, Liabeuf V, Agabriel C, Birnbaum J, Porri F, Sarrat A, Apoil P, Vivinus M, Garnier L, Chiriac AM, Caimmi D, Bourrain J, Demoly P, Guez S, Boralevi F, Lovato B, Palussière C, Leroy S, Bourrier T, Giovannini‐Chami L, Gouitaa M, Aferiat‐Derome A, Charpin D, Sofalvi T, Cabon‐Boudard I, Massabie‐Bouchat Y, Hofmann B, Bonardel N, Dron‐Gonzalvez M, Sterling B, Carsin A, Vivinus S, Poitevin B, Nicolau L, Liautard G, Soler C, Mezouar S, Annesi‐Maesano I, Mège J, Lidholm J, Vitte J. Pru p 7 sensitization is a predominant cause of severe, cypress pollen‐associated peach allergy. Clin Exp Allergy 2019; 49:526-536. [DOI: 10.1111/cea.13345] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/11/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
| | - Yannick Chantran
- UPMC Univ Paris 06 INSERM UMRS 938 Centre de Recherche Saint‐Antoine, team “Immune System, Neuroinflammation and Neurodegenerative Diseases” Hôpital Saint‐Antoine Sorbonne Universités Paris France
- Immunology Department AP‐HP Saint‐Antoine Hospital Paris France
| | - Rihane Arif‐Lusson
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | | | | - Alain Poisson
- Service de Pneumo‐Allergologie Hôpital Saint Joseph Marseille France
| | - Valérie Liabeuf
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Dermatologie‐Vénéréologie Marseille France
| | - Chantal Agabriel
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Pédiatrie Multidisciplinaire Marseille France
| | - Joëlle Birnbaum
- Service de Pneumologie et Allergologie CH du Pays d'Aix Aix‐en‐Provence France
| | - Françoise Porri
- Service de Pneumo‐Allergologie Hôpital Saint Joseph Marseille France
| | - Anne Sarrat
- Laboratoire d'Immunologie et Immunogénétique GH Pellegrin CHU Bordeaux Bordeaux France
| | - Pol‐André Apoil
- Institut Fédératif de Biologie Hôpital Purpan, CHU Toulouse Toulouse France
| | - Mylène Vivinus
- Laboratoire d'Immunologie Hôpital de l'Archet CHU Nice Nice France
| | - Lorna Garnier
- Laboratoire d'Immunologie CH Lyon Sud CHU Lyon Pierre‐Bénite France
| | - Anca Mirela Chiriac
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
- Sorbonne Universités INSERM UMRS 1136 IPLESP, team EPAR Paris France
| | - Davide‐Paolo Caimmi
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
- Sorbonne Universités INSERM UMRS 1136 IPLESP, team EPAR Paris France
| | - Jean‐Luc Bourrain
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
| | - Pascal Demoly
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
- Sorbonne Universités INSERM UMRS 1136 IPLESP, team EPAR Paris France
| | - Stéphane Guez
- Unité d'allergologie, GH Pellegrin, CHU Bordeaux Bordeaux France
| | - Franck Boralevi
- Unité de Dermatologie Pédiatrique Hôpital Pellegrin‐Enfants, CHU Bordeaux Bordeaux France
| | | | | | - Sylvie Leroy
- Service de Pneumologie Hôpital Pasteur CHU Nice Nice France
| | | | | | - Marion Gouitaa
- Aix‐Marseille Univ APHM, Hôpital Nord Service de Pneumologie Marseille France
| | | | - Denis Charpin
- Aix‐Marseille Univ APHM, Hôpital Timone Unité de Pneumologie Marseille France
| | - Tünde Sofalvi
- Aix‐Marseille Univ APHM, Hôpital Nord Service de Pneumologie Marseille France
| | - Isabelle Cabon‐Boudard
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Chirurgie Pédiatrique Marseille France
| | | | | | | | | | - Benoît Sterling
- Medical Office Marseille France
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Pneumo‐Pédiatrie Marseille France
| | - Ania Carsin
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Pneumo‐Pédiatrie Marseille France
| | - Serge Vivinus
- Service de Pneumologie Hôpital Pasteur CHU Nice Nice France
| | | | | | | | | | - Soraya Mezouar
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | | - Jean‐Louis Mège
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | | - Joana Vitte
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | |
Collapse
|
16
|
Santoni M, Ciardiello MA, Zampieri R, Pezzotti M, Giangrieco I, Rafaiani C, Ciancamerla M, Mari A, Avesani L. Plant-Made Bet v 1 for Molecular Diagnosis. FRONTIERS IN PLANT SCIENCE 2019; 10:1273. [PMID: 31649716 PMCID: PMC6795700 DOI: 10.3389/fpls.2019.01273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/12/2019] [Indexed: 05/07/2023]
Abstract
Allergic disease diagnosis is currently experiencing a breakthrough due to the use of allergenic molecules in serum-based assays rather than allergen extracts in skin tests. The former methodology is considered a very innovative technology compared with the latter, since it is characterized by flexibility and adaptability to the patient's clinical history and to microtechnology, allowing multiplex analysis. Molecular-based analysis requires pure allergens to detect IgE sensitization, and a major goal, to maintain the diagnosis cost-effective, is to limit their production costs. In addition, for the production of recombinant eukaryotic proteins similar to natural ones, plant-based protein production is preferred to bacterial-based systems due to its ability to perform most of the post-translational modifications of eukaryotic molecules. In this framework, Plant Molecular Farming (PMF) may be useful, being a production platform able to produce complex recombinant proteins in short time-frames at low cost. As a proof of concept, PMF has been exploited for the production of Bet v 1a, a major allergen associated with birch (Betula verrucosa) pollen allergy. Bet v 1a has been produced using two different transient expression systems in Nicotiana benthamiana plants, purified and used in a new generation multiplex allergy diagnosis system, the patient-Friendly Allergen nano-BEad Array (FABER). Plant-made Bet v 1a is immunoreactive, binding IgE and inhibiting IgE-binding to the Escherichia coli expressed allergen currently available in the FABER test, thus suggesting an overall similar though non-overlapping immune activity compared with the E. coli expressed form.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Roberta Zampieri
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Ivana Giangrieco
- Institute of Bioscience and BioResources, CNR, Naples, Italy
- ADL (Allergy Data Laboratories) S.r.l., Latina, Italy
| | | | | | - Adriano Mari
- ADL (Allergy Data Laboratories) S.r.l., Latina, Italy
- Associated Centre for Molecular Allergology, Rome, Italy
- *Correspondence: Adriano Mari, ; Linda Avesani,
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
- *Correspondence: Adriano Mari, ; Linda Avesani,
| |
Collapse
|