1
|
Zhang S, Wang D, Ding Y, Li Y, Wang Y, Zeng J. Inhibition of calpain reduces oxidative stress and attenuates pyroptosis and ferroptosis in Clostridium perfringens Beta-1 toxin-induced macrophages. Microbiol Res 2024; 289:127916. [PMID: 39342748 DOI: 10.1016/j.micres.2024.127916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Clostridium perfringens Beta-1 toxin (CPB1) is a lethal toxin, which can lead to necrotic enteritis, but the pathological mechanism has not been elucidated. We investigated whether reactive oxygen species (ROS) participated in CPB1-induced pyroptosis and ferroptosis, and investigated the effects of calpain on CPB1-induced oxidative stress and inflammation. Scavenging ROS by N-Acetyl-L cysteine (NAC) led to the reduction of ROS, inhibited the death of macrophages, cytoplasmic swelling and membrane rupture, the expression of pyroptosis-related proteins and proinflammatory factor, while increased the expression of anti-inflammatory factors in cells treated with rCPB1. Adenosine triphosphate (ATP) synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 (ATP5A1) was identified specifically interact with rCPB1. Silencing ATP5A1 inhibited accumulation of ATP and ROS, leaded to less cytoplasmic swelling and membrane rupture, attenuated pyroptosis and inflammation in rCPB1-treated cells. We also found that rCPB1 induces ferroptosis in macrophages, and the level of ferroptosis was similar with H2O2. Of note, H2O2 is a major ROS source, indicated that ROS production may play a major role in the regulation of ferroptosis in macrophages treated with rCPB1. This finding was further corroborated in rCPB1- induced human acute monocytic leukemia cells, which were treated with NAC. In addition, the inhibition of ferroptosis using liproxstatin-1 inhibited the shriveled mitochondrial morphology, increased the expression of glutathione peroxidase 4, nicotinamide adenine dinucleotide (phosphate) hydrogen: quinone oxidoreductase 1 and cysteine/glutamic acid reverse transport solute carrier family 7 members 11, decreased the expression of heme oxygenase 1, nuclear receptor coactivator 4 and transferrin receptor proteins, reduced malondialdehyde and lipid peroxidation levels, and increased intracellular L-glutathione levels in cells treated with rCPB1. Furthermore, calpain inhibitor PD151746 was used to investigate how pyroptosis and ferroptosis were involved simultaneously in rCPB1-treated macrophages. We showed that PD151746 inhibited ATP and ROS production, reversed the representative pyroptosis/ferroptosis indicators and subsequently reduced inflammation. The above findings indicate that rCPB1 might lead to macrophage pyroptosis and ferroptosis through the large and sustained increase in intracellular calpain and oxidative stress, further lead to inflammation.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Dong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yawen Ding
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Zhao Q, Xu Q, Serafino MA, Zhang Q, Wang C, Yu Y. Comprehensive analysis of circular RNAs in porcine small intestine epithelial cells associated with susceptibility to Escherichia coli F4ac diarrhea. BMC Genomics 2023; 24:211. [PMID: 37085748 PMCID: PMC10122348 DOI: 10.1186/s12864-022-08994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/06/2022] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Diarrhea is one of the most common diseases in pig industry, which seriously threatens the health of piglets and causes huge economic losses. Enterotoxigenic Escherichia coli (ETEC) F4 is regarded as the most important cause of diarrhea in piglets. Some pigs are naturally resistant to those diarrheas caused by ETEC-F4, because they have no F4 receptors (F4R) on their small intestine epithelial cells that allow F4 fimbriae adhesion. Circular RNA (circRNA) has been shown to play an important regulatory role in the pathogenesis of disease. We hypothesized that circRNAs may also regulate the adhesion of piglet small intestinal epithelial cells to ETEC F4 fimbriae. However, the circRNA expression profiles of piglets with different Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotypes are still unclear, and the intermediate regulatory mechanisms need to be explored. Hence, the present study assessed the circRNA expression profiling in small intestine epithelial cells of eight male piglets with different ETEC-F4 adhesion phenotypes and ITGB5 genotypes to unravel their regulatory function in susceptibility to ETEC-F4ac diarrhea. Piglets were divided into two groups: non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS The RNA-seq data analysis identified 13,199 circRNAs from eight samples, most of which were exon-derived. In the small intestine epithelial cells, 305 were differentially expressed (DE) circRNAs between the adhesive and non-adhesive groups; of which 46 circRNAs were upregulated, and 259 were downregulated. Gene ontology and KEGG enrichment analysis revealed that most significantly enriched DE circRNAs' host genes were linked to cytoskeletal components, protein phosphorylation, cell adhesion, ion transport and pathways (such as adherens junction, gap junction) associated with ETEC diarrhea. The circRNA-miRNA-mRNA interaction network was also constructed to elucidate their underlying regulatory relationships. Our results identified several candidate circRNAs that affects susceptibility to ETEC diarrhea. Among them, circ-SORBS1 can adsorb ssc-miR-345-3p to regulate the expression of its host gene SORBS1, thus improving cell adhesion. CONCLUSION Our results provided insights into the regulation function of circRNAs in susceptibility to ETEC diarrhea of piglets, and enhanced our understanding of the role of circRNAs in regulating ETEC diarrhea, and reveal the great potential of circRNA as a diagnostic marker for susceptibility of ETEC diarrhea in piglets.
Collapse
Affiliation(s)
- Qingyao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qinglei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - M A Serafino
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- School of Natural Resources and Environmental Studies, University of Juba, B. O. Pox 82, Juba, South Sudan
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong, 271018, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
3
|
Xie K, Yang Q, Yan Z, Gao X, Huang X, Wang P, Zhang J, Yang J, Li J, Gun S. miR-30d Inhibition Protects IPEC-J2 Cells Against Clostridium perfringens Beta2 Toxin-Induced Inflammatory Injury. Front Vet Sci 2022; 9:909500. [PMID: 35799836 PMCID: PMC9253665 DOI: 10.3389/fvets.2022.909500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens beta2 (CPB2) toxin, one of the virulence factors of Clostridium perfringens (C. perfringens), can cause necrotizing enterocolitis in piglets. Accumulating pieces of evidence indicate that microRNAs (miRNAs) refer to the regulation of inflammatory processes. Previously, we have discovered that miR-30d was differentially expressed between the ileum of normal piglets and C. perfringens type C-infected diarrheal piglets. Here, we found that miR-30d expression was lowered in CPB2 toxin-treated intestinal porcine epithelial cells (IPEC-J2) at different time points. Subsequently, we determined that miR-30d inhibitor attenuated CPB2 toxin revulsive inflammatory damage in IPEC-J2 cells and promoted cell proliferation and cell cycle progression, whereas miR-30d mimic had opposite results. In addition, we confirmed that Proteasome activator subunit 3 (PSME3) was a downstream target gene of miR-30d via a dual luciferase reporter assay, qPCR, and western blot. We also found that overexpression of PSME3 suppressed CPB2 toxin-induced inflammatory damage and promoted cell proliferation and cycle progression. Our results demonstrate that miR-30d aggravates CPB2 toxin revulsive IPEC-J2 cells inflammatory injury via targeting PSME3, thereby providing a novel perspective for the prevention and treatment of piglet diarrhea at the molecular level.
Collapse
Affiliation(s)
- Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Juanli Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
- *Correspondence: Shuangbao Gun
| |
Collapse
|
4
|
Pi G, Song W, Wu Z, Li Y, Yang H. Comparison of expression profiles between undifferentiated and differentiated porcine IPEC-J2 cells. Porcine Health Manag 2022; 8:4. [PMID: 35000622 PMCID: PMC8744309 DOI: 10.1186/s40813-022-00247-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intestinal porcine enterocyte cell line (IPEC-J2) is a well-established model to study porcine intestinal physiology. IPEC-J2 cells undergo spontaneous differentiation during culture while changes in expression patterns of differentiated IPEC-J2 remain unclear. Therefore, this study was aimed to investigate the expression profiles of IPEC-J2 cells at the transcriptional level. Differentially expressed genes (DEGs), enriched pathways and potential key genes were identified. Alkaline phosphatase (AKP) and percentages of apoptotic cells were also measured. RESULTS Overall, a total of 988 DEGs were identified, including 704 up-regulated and 284 down-regulated genes. GO analysis revealed that epithelial cell differentiation, apoptotic signaling pathway, regulation of cytokine production and immune system process, regulation of cell death and proliferation, cell junction complexes, and kinase binding were enriched significantly. Consistently, KEGG, REACTOME, and CORUM analysis indicated that cytokine responses modulation may be involved in IPEC-J2 differentiation. Moreover, AKP activity, a recognized marker of enterocyte differentiation, was significantly increased in IPEC-J2 after 14 days of culture. Meanwhile, annexin V-FITC/PI assay demonstrated a remarkable increase in apoptotic cells after 14 days of culture. Additionally, 10 hub genes were extracted, and STAT1, AKT3, and VEGFA were speculated to play roles in IPEC-J2 differentiation. CONCLUSIONS These findings may contribute to the molecular characterization of IPEC-J2, and may progress the understanding of cellular differentiation of swine intestinal epithelium.
Collapse
Affiliation(s)
- Guolin Pi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Wenxin Song
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Zijuan Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China.
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China.
| |
Collapse
|
5
|
Wang W, Yang Q, Huang X, Luo R, Xie K, Gao X, Yan Z, Wang P, Zhang J, Yang J, Zhang B, Gun S. Effects of miR-204 on apoptosis and inflammatory response of Clostridium perfringens beta2 toxin induced IPEC-J2 cells via targeting BCL2L2. Microb Pathog 2021; 156:104906. [PMID: 33965507 DOI: 10.1016/j.micpath.2021.104906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Clostridium perfringens beta2 (CPB2) toxin can cause intestinal damage and inflammatory responses in a variety of animals, which seriously endanger the healthy development of animal husbandry. Increasing evidence has demonstrated that microRNAs (miRNAs) can play an important regulatory role in the process of pathogenic infection. In our previous study, we found that miR-204 was highly expressed in the ileum tissues of the susceptible group diarrhea piglets after infection with Clostridium perfringens (C. perfringens) type C. In this study, we found that miR-204 was also up-regulated in different time points after CPB2 toxin treatment. Overexpression of miR-204 promoted apoptosis and inflammatory response of intestinal porcine epithelial cells (IPEC-J2), whereas the opposite results were displayed after transfected with miR-204 inhibitor. Furthermore, the luciferase reporter assays confirmed that BCL2L2 was a direct target gene of miR-204. Interestingly, we found that overexpression BCL2L2 attenuated the apoptosis and inflammatory response of CPB2 toxin induced IPEC-J2 cells. In conclusion, these results find that miR-204 promotes the apoptosis and intensify inflammatory response of CPB2 toxin induced IPEC-J2 cells via targeting BCL2L2. These data provide a valuable reference for the piglets resistance diarrhea at the molecular level.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanli Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, 730070, China.
| |
Collapse
|