1
|
Zuo Y, Yang J, Zhang H, Li L, Luo J, Lv Y, Yuan M, Yang K. Genome comparison of long-circulating field CnmeGV isolates from the same region. Virus Res 2024; 345:199390. [PMID: 38710287 PMCID: PMC11097085 DOI: 10.1016/j.virusres.2024.199390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Cnaphalocrocis medinalis granulovirus (CnmeGV), belonging to Betabaculovirus cnamedinalis, can infect the rice pest, the rice leaf roller. In 1979, a CnmeGV isolate, CnmeGV-EP, was collected from Enping County, China. In 2014, we collected another CnmeGV isolate, CnmeGV-EPDH3, at the same location and obtained the complete virus genome sequence using Illumina and ONT sequencing technologies. By combining these two virus isolates, we updated the genome annotation of CnmeGV and conducted an in-depth analysis of its genome features. CnmeGV genome contains abundant tandem repeat sequences, and the repeating units in the homologous regions (hrs) exhibit overlapping and nested patterns. The genetic variations within EPDH3 population show the high stability of CnmeGV genome, and tandem repeats are the only region of high genetic variation in CnmeGV genome replication. Some defective viral genomes formed by recombination were found within the population. Comparison analysis of the two virus isolates collected from Enping showed that the proteins encoded by the CnmeGV-specific genes were less conserved relative to the baculovirus core genes. At the genomic level, there are a large number of SNPs and InDels between the two virus isolates, especially in and around the bro genes and hrs. Additionally, we discovered that CnmeGV acquired a segment of non-ORF sequence from its host, which does not provide any new proteins but rather serves as redundant genetic material integrated into the viral genome. Furthermore, we observed that the host's transposon piggyBac has inserted into some virus genes. Together, dsDNA viruses could acquire non-coding genetic material from their hosts to expand the size of their genomes. These findings provide new insights into the evolution of dsDNA viruses.
Collapse
Affiliation(s)
- Yachao Zuo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiawen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanrong Lv
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Li C, Han G, Huang L, Lu Y, Xia Y, Zhang N, Liu Q, Xu J. Metagenomic Analyses Reveal Gut Microbial Profiles of Cnaphalocrocis medinalis Driven by the Infection of Baculovirus CnmeGV. Microorganisms 2024; 12:757. [PMID: 38674701 PMCID: PMC11052019 DOI: 10.3390/microorganisms12040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The composition of microbiota in the digestive tract gut is essential for insect physiology, homeostasis, and pathogen infection. Little is known about the interactions between microbiota load and oral infection with baculoviruses. CnmeGV is an obligative baculovirus to Cnaphalocrocis medinalis. We investigated the impact of CnmeGV infection on the structure of intestinal microbes of C. medinalis during the initial infection stage. The results revealed that the gut microbiota profiles were dynamically driven by pathogen infection of CnmeGV. The numbers of all the OTU counts were relatively higher at the early and later stages, while the microbial diversity significantly increased early but dropped sharply following the infection. The compositional abundance of domain bacteria Firmicutes developed substantially higher. The significantly enriched and depleted species can be divided into four groups at the species level. Fifteen of these species were ultimately predicted as the biomarkers of CnmeGV infection. CnmeGV infection induces significant enrichment of alterations in functional genes related to metabolism and the immune system, encompassing processes such as carbohydrate, amino acid, cofactor, and vitamin metabolism. Finally, the study may provide an in-depth analysis of the relationship between host microbiota, baculovirus infection, and pest control of C. medinalis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Xu
- National Experimental Station of Yangzhou for Agricultural Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou 225008, China; (C.L.); (G.H.); (L.H.); (Y.L.); (Y.X.); (N.Z.); (Q.L.)
| |
Collapse
|
3
|
Zhao X, Xu H, Yang Y, Sun T, Ullah F, Zhu P, Lu Y, Huang J, Wang Z, Lu Z, Guo J. Defense Responses of Different Rice Varieties Affect Growth Performance and Food Utilization of Cnaphalocrocis medinalis Larvae. RICE (NEW YORK, N.Y.) 2024; 17:9. [PMID: 38244131 PMCID: PMC10799839 DOI: 10.1186/s12284-024-00683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most serious pests on rice. At present, chemical control is the main method for controlling this pest. However, the indiscriminate use of chemical insecticides has non-target effects and may cause environmental pollution. Besides, leaf curling behavior by C. medinalis may indirectly reduce the efficacy of chemical spray. Therefore, it is crucial to cultivate efficient rice varieties resistant to this pest. Previous studies have found that three different rice varieties, Zhongzao39 (ZZ39), Xiushui134 (XS134), and Yongyou1540 (YY1540), had varying degrees of infestation by C. medinalis. However, it is currently unclear whether the reason for this difference is related to the difference in defense ability of the three rice varieties against the infestation of C. medinalis. To explore this issue, the current study investigated the effects of three rice varieties on the growth performance and food utilization capability of the 4th instar C. medinalis. Further, it elucidated the differences in defense responses among different rice varieties based on the differences in leaf physiological and biochemical indicators and their impact on population occurrence. The results showed that the larval survival rate was the lowest, and the development period was significantly prolonged after feeding on YY1540. This was not related to the differences in leaf wax, pigments, and nutritional components among the three rice varieties nor to the feeding preferences of the larvae. The rate of superoxide anion production, hydrogen peroxide content, and the activity of three protective enzymes were negatively correlated with larval survival rate, and they all showed the highest in YY1540 leaves. Compared to other tested varieties, although the larvae feeding on YY1540 had higher conversion efficiency of ingested food and lower relative consumption rate, their relative growth was faster, indicating stronger food utilization capability. However, they had a lower accumulation of protein. This suggests that different rice varieties had different levels of oxidative stress after infestation by C. medinalis. The defense response of YY1540 was more intense, which was not conducive to the development of the larvae population. These results will provide new insights into the interaction mechanism between different rice varieties and C. medinalis and provide a theoretical basis for cultivating rice varieties resistant to this pest.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tianyi Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianlei Huang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China
| | - Zhengliang Wang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
4
|
Han G, Li C, Zhang N, Liu Q, Huang L, Xia Y, Xu J. CmHem, a hemolin-like gene identified from Cnaphalocrocis medinalis, involved in metamorphosis and baculovirus infection. PeerJ 2023; 11:e16225. [PMID: 37810787 PMCID: PMC10559889 DOI: 10.7717/peerj.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Background As a member of the immunoglobulin superfamily, hemolins play a vital role in insect development and defense against pathogens. However, the innate immune response of hemolin to baculovirus infection varies among different insects. Methods and results In this study, the hemolin-like gene from a Crambidae insect, Cnaphalocrocis medinalis, CmHem was cloned, and its role in insect development and baculovirus infection was analyzed. A 1,528 bp contig as potential hemolin-like gene of C. medinalis was reassembled from the transcriptome. Further, the complete hemolin sequence of C. medinalis (CmHem) was cloned and sequenced. The cDNA of CmHem was 1,515 bp in length and encoded 408 amino acids. The deduced amino acid of CmHem has relatively low identities (41.9-62.3%) to various insect hemolins. However, it contains four Ig domains similarity to other insect hemolins. The expression level of CmHem was the highest in eggs, followed by pupae and adults, and maintained a low expression level at larval stage. The synthesized siRNAs were injected into mature larvae, and the CmHem transcription decreased by 51.7%. Moreover, the abdominal somites of larvae became straightened, could not pupate normally, and then died. Infection with a baculovirus, C. medinalis granulovirus (CnmeGV), the expression levels of CmHem in the midgut and fat body of C. medinalis significantly increased at 12 and 24 h, respectively, and then soon returned to normal levels. Conclusions Our results suggested that hemolin may be related to the metamorphosis of C. medinalis. Exposure to baculovirus induced the phased expression of hemolin gene in the midgut and fat body of C. medinalis, indicated that hemolin involved in the immune recognition of Crambidae insects to baculovirus.
Collapse
Affiliation(s)
- Guangjie Han
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Chuanming Li
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Nan Zhang
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Qin Liu
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Lixin Huang
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Yang Xia
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Jian Xu
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| |
Collapse
|
5
|
Li ET, Wu HJ, Wang ZM, Li KB, Zhang S, Cao YZ, Yin J. PI3K/Akt/CncC signaling pathway mediates the response to EPN-Bt infection in Holotrichia parallela larvae. PEST MANAGEMENT SCIENCE 2023; 79:1660-1673. [PMID: 36565065 DOI: 10.1002/ps.7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Combining the entomopathogenic nematode (EPN), Heterorhabditis beicherriana LF strain, and Bacillus thuringiensis (Bt) HBF-18 strain is a practical strategy to manage the larvae of Holotrichia parallela Motschulsky (white grubs). However, the mechanisms underlying the larval defense response to this combined biocontrol strategy are unknown. RESULTS The activities of some antioxidant enzymes (SOD, POD, CAT) and some detoxifying enzymes (AChE, P-450, CarE, GST) in grubs showed an activation-inhibition trend throughout the EPN-Bt exposure time course. Eight potentially key antioxidant and detoxifying enzyme genes in response to EPN-Bt infection were identified from the midgut of grubs through RNA sequencing. After silencing CAT, CarE18, and GSTs1, the enzyme activities were significantly decreased by 30.29%, 68.80%, and 34.63%, respectively. Meanwhile, the mortality of grubs was increased by 18.40%, 46.30%, and 42.59% after exposure to EPN-Bt for 1 day. Interestingly, the PI3K/Akt signaling pathway was significantly enriched in KEGG enrichment analysis, and the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), cap 'n' collar isoform-C (CncC), kelch-like ECH-associated protein 1 (Keap1), and CarE18 were all up-regulated when exposed to EPN-Bt for 1 day. Furthermore, RNAi-mediated PI3K silencing showed a similar down-regulated trend between PI3K/Akt/CncC and CarE18. Moreover, silencing PI3K rendered grubs more susceptible to EPN-Bt and accelerated symbiotic bacteria multiplication in grubs. CONCLUSION These results suggest that the PI3K/Akt/CncC pathway mediates the expression of CarE18 and participates in the defense response of H. parallela larvae against EPN-Bt infection. Our data provide valuable insights into the design of appropriate management strategies for this well-known agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Jin R, Xiao Z, Nakai M, Huang GH. Insight into the regulation of the Nrf2 pathway in response to ascovirus infection in Spodoptera exigua. PEST MANAGEMENT SCIENCE 2023; 79:1123-1130. [PMID: 36349417 DOI: 10.1002/ps.7284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ascoviruses are a type of entomopathogenic microorganism with high biological pest control potential and are expected to contribute to the natural control of lepidopteran pests. However, knowledge of the molecular mechanism underlying the biocidal activity of ascovirus on its host insects remains limited. RESULTS In this study, the relative enzyme activity of superoxide dismutase and peroxidase, as well as the expression level of Spodoptera exigua peroxidase (SePOD), were found to be significantly increased at 6 h post infection with Heliothis virescens ascovirus 3h (HvAV-3h). H2 O2 accumulation and enhanced expression of NADPH Oxidase (SeNOX) were also observed. In addition, Nuclear Factor erythroid 2-Related Factor 2 (SeNrf2) and muscle aponeurosis fibromatosis (SeMaf) were overexpressed following infection with HvAV-3h. Silencing of SeNrf2 decreased the expression of SePOD, whereas the mortality of SeNrf2-silenced larvae and viral genome copy number also increased. Further RNA interference of SeNOX significantly decreased expression of SeNrf2 and SePOD and therefore increased the mortality and viral genome copy number of the ascovirus-infected host. CONCLUSION The HvAV-3h activated Nrf2/ARE pathway of S. exigua and reactive oxygen species were found to respond to ascovirus infection by regulating alterations in antioxidant enzyme genes mediated by the host Nrf2/ARE pathway. These findings enhance our knowledge of ascovirus-host interactions and lay the foundation for the application of ascoviruses in biological pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruoheng Jin
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, People's Republic of China
| | - Zhengkun Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, People's Republic of China
| | - Madoka Nakai
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
7
|
Zhao X, Guo J, Lu Y, Sun T, Tian J, Huang J, Xu H, Wang Z, Lu Z. Reference Genes for Expression Analysis Using RT-qPCR in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). INSECTS 2022; 13:insects13111046. [PMID: 36421949 PMCID: PMC9697642 DOI: 10.3390/insects13111046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 05/31/2023]
Abstract
Cnaphalocrocis medinalis is a destructive migratory rice pest. Although many studies have investigated its behavioral and physiological responses to environmental changes and migration-inducing factors, little is known about its molecular mechanisms. This study was conducted to select suitable RT-qPCR reference genes to facilitate future gene expression studies. Here, thirteen candidate housekeeping genes (EF1α, AK, EF1β, GAPDH, PGK, RPL13, RPL18, RPS3, 18S rRNA, TBP1, TBP2, ACT, and UCCR) were selected to evaluate their stabilities under different conditions using the ∆CT method; the geNorm, NormFinder, BestKeeper algorithms; and the online tool RefFinder. The results showed that the most stable reference genes were EF1β, PGK, and RPL18, related to developmental stages; RPS3 and RPL18 in larval tissues; EF1β and PGK in larvae feeding on different rice varieties; EF1α, EF1β, and PGK in larvae temperature treatments; PGK and RPL13, related to different adult ages; PGK, EF1α, and ACT, related to adult nutritional conditions; RPL18 and PGK, related to adult mating status; and, RPS3 and PGK, related to different adult take-off characteristics. Our results reveal reference genes that apply to various experimental conditions and will greatly improve the reliability of RT-qPCR analysis for the further study of gene function in this pest.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianyi Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Junce Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianlei Huang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengliang Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhongxian Lu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Lü D, Yan Z, Hu D, Zhao A, Wei S, Wang P, Yuan X, Li Y. RNA Sequencing Reveals the Potential Adaptation Mechanism to Different Hosts of Grapholita molesta. INSECTS 2022; 13:893. [PMID: 36292841 PMCID: PMC9604371 DOI: 10.3390/insects13100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Grapholita molesta is an important fruit tree worldwide pest which feeds on hosts extensively and does serious harm. In this paper, the growth and development parameters and protease activities of G. molesta fed on different hosts were compared. Using Illumina RNA sequencing technology, 18 midgut samples from five different hosts (apple, pear, plum, peach and peach shoots) and artificial diet were sequenced and compared with the reference genome, resulting in 15269 genes and 2785 predicted new genes. From 15 comparative combinations, DEGs were found from 286 to 4187 in each group, with up-regulated genes from 107 to 2395 and down-regulated genes from 83 to 2665. KEGG pathway analysis showed that DEGs were associated with amino acid metabolism, starch and sucrose metabolism, carbohydrate metabolism, and hydrolase activity. A total of 31 co-expression gene modules of different hosts were identified by WGCNA. qRT-PCR showed that the expression pattern of the trypsin gene was consistent with RNA sequencing. In this study, growth and development parameters, protease activity, DEGs, enrichment analysis and qRT-PCR were combined to reveal the adaptation process to different hosts of G. molesta in many aspects. The results of this study provide a basis for further exploration of the molecular mechanism of host adaptation of G. molesta.
Collapse
Affiliation(s)
- Dongbiao Lü
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zizheng Yan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Di Hu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Aiping Zhao
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY 14456, USA
| | - Xiangqun Yuan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yiping Li
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|