1
|
Sun N, Zhang M, Kong J, Li J, Dong Y, Wang X, Fu L, Zhou Y, Chen Y, Li Y, Sun X, Guo R. Dysregulated T-cell homeostasis and decreased CD30 + Treg proliferating in aplastic anemia. Heliyon 2024; 10:e35775. [PMID: 39170389 PMCID: PMC11337026 DOI: 10.1016/j.heliyon.2024.e35775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Aplastic anemia (AA) is an autoimmune hematopoietic disease mediated by autoreactive T cells leading to bone marrow failure. However, the precise role of autoreactive T cells in the development of AA is not fully understood, hindering the advancement of therapeutic and diagnostic strategies. In this study, we conducted a single-cell transcriptome analysis of CD8+ T cells, conventional CD4+ T (CD4+ Tconv) cells, and Treg cells, to elucidate the potential disruption of T cell homeostasis in patients with AA. We identified changes in CD4+ Tconv cells, including loss of homeostasis in naïve and memory cells and increased differentiation potential in T helper type 1 (TH1), T helper type 2 (TH2), and T helper type 17 (TH17) cells. Additionally, we identified naïve and memory CD8+ T cells that were enforced into an effector state. CD127 is an ideal surface marker for assessing the immune state of CD8+ T cells,as identified by flow cytometry. Abnormal expression of TNFSF8 has been observed in AA and other autoimmune diseases. Flow cytometry analysis revealed that TNFRSF8 (CD30), a receptor for TNFSF8, was predominantly present in human Treg cells. Importantly, patients with AA have a decreased CD30+ Treg subset. RNA-sequencing analysis revealed, that the CD30+ Treg cells are characterized by high proliferation and a remarkable immunosuppressive phenotype. Taken, together, we propose that abnormal TNFSF8/TNFRSF8 signaling is involved in dysfunctional T cell immunity by increasing the destruction of CD30+ Treg cells.
Collapse
Affiliation(s)
- Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Dong
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoqian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Clinical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yiwei Zhou
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaoyao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zhang Q, Lin Y, Zhao R, Huang T, Tian Y, Zhu L, Qin J, Liu H. Structural characterization of extracellular polysaccharides from Phellinus igniarius SH-1 and their therapeutic effects on DSS induced colitis in mice. Int J Biol Macromol 2024; 275:133654. [PMID: 38972645 DOI: 10.1016/j.ijbiomac.2024.133654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Phellinus igniarius is a valuable medicinal and edible mushroom, and its polysaccharides exhibit excellent anti-inflammatory activity. During liquid fermentation to produce P. igniarius mycelia, the fermentation liquid is often discarded, but it contains extracellular polysaccharides. To better utilize these resources, P. igniarius SH-1 was fermented in a 100 L fermenter, and PIPS-2 was isolated and purified from the fermentation broth. The structural characteristics and anti-inflammatory activity of PIPS-2 were determined. PIPS-2 had a molecular weight of 22.855 kDa and was composed of galactose and mannose in a molar ratio of 0.38:0.62. Structural analysis revealed that the main chain of PIPS-2 involved →2)-α-D-Manp-(1 → 3)-β-D-Galf-(1→, and the side chains involved α-D-Manp-(1 → 6)-α-D-Manp-(1→, α-D-Manp-(1 → 3)-α-D-Manp-(1→, and α-D-Manp-(1. PIPS-2 alleviated the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, improved the imbalance of inflammatory factors and antioxidant enzymes, and increased short-chain fatty acid contents. Combining the intestinal flora and metabolite results, PIPS-2 was found to regulate the abundance of Firmicutes, Lachnospiraceae_NK4A136_group, Proteobacteria, Bacteroides, and many serum metabolites including hexadecenal, copalic acid, 8-hydroxyeicosatetraenoic acid, artepillin C, and uric acid, thereby ameliorating metabolite related disorders in mice with colitis. In summary, PIPS-2 may improve colitis in mice by regulating the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qiaoyi Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
| | - Rou Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ting Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha, China
| | - Lin Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jing Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- Agricultural Bioengineering Institute, Changsha, China
| |
Collapse
|
3
|
Liao X, Liu J, Guo X, Meng R, Zhang W, Zhou J, Xie X, Zhou H. Origin and Function of Monocytes in Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2897-2914. [PMID: 38764499 PMCID: PMC11100499 DOI: 10.2147/jir.s450801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolong Guo
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruiping Meng
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
He Z, Zhou Q, Du J, Huang Y, Wu B, Xu Z, Wang C, Cheng X. Integrated single-cell and bulk RNA sequencing reveals CREM is involved in the pathogenesis of ulcerative colitis. Heliyon 2024; 10:e27805. [PMID: 38496850 PMCID: PMC10944264 DOI: 10.1016/j.heliyon.2024.e27805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease characterized by persistent colonic inflammation. Here, we performed a systematic analysis to gain better insights into UC pathogenesis. Methods We analyzed two UC-related datasets extracted from the gene expression omnibus database using several bioinformatics tools. The primary cell types and key subgroups of primary cells associated with UC and differentially expressed genes (DEGs) between UC and control samples were identified. The molecular regulation of the key genes was also predicted. The gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of marker genes of key cell subgroups and model genes were performed. The expression of key enriched genes was validated in 10 clinical samples using real-time quantitative polymerase chain reaction (RT-qPCR). Results Monocytes were identified as the major cell type. Ten differentially expressed marker genes were obtained by intersecting the 3121 DEGs, 38 marker genes in major cell types, and 104 marker genes in key cell subgroups. Four essential genes, associated with immune response, were obtained using support vector machine recursive feature elimination and least absolute shrinkage and selection operator analyses. The four essential genes were highly expressed in Cluster 0 during differentiation. Validation of the four key genes in colonic mucosal biopsy specimens from 10 normal and 10 UC patients revealed that CREM was highly expressed in both the lesion-free sites and lesion sites colonic mucosa of UC patients compared with normal adults. Conclusions We identified CREM involved in UC pathogenesis, which is expected to provide a new therapeutic target for UC.
Collapse
Affiliation(s)
- Zongqi He
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China
| | - Jun Du
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Yuyu Huang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Bensheng Wu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Zhizhong Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Chao Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Xudong Cheng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| |
Collapse
|
5
|
Printsev I, Alalli E, Bilsborough J. The Opposite Functions of CD30 Ligand Isoforms. Curr Issues Mol Biol 2024; 46:2741-2756. [PMID: 38534788 DOI: 10.3390/cimb46030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
TNFSF8/CD30 ligand is a TNF superfamily member expressed on several major immune cell types, including activated monocytes, B, and T cells. The signaling of CD30 ligand through its cognate CD30 receptor has been shown to have effects on cell differentiation, cell death/survival, and cytokine production. The signaling pair has been implicated in hematopoietic malignancies and inflammatory disease, and a chemotherapy-CD30 antibody combination for the treatment of Hodgkin and other lymphomas has been developed. There are two recorded isoforms of CD30 ligand. All hitherto studies of CD30 ligand are of the first, canonical isoform, while the second isoform has never been described. This study aims to elucidate the properties and signaling functions of the second CD30 ligand isoform. We have found mRNA expression of both isoforms in the PBMCs of all six healthy donors tested. Through methods in cell biology and biochemistry, we were able to discover that the second CD30 ligand isoform has no discernable pro-inflammatory function and, in fact, isoform 2 can restrict the capacity of the canonical isoform to signal through the CD30 receptor by preventing their interaction. This discovery has implications for the future development of therapeutics targeting the CD30/CD30 ligand signaling pair in cancer and inflammatory disease.
Collapse
Affiliation(s)
- Ignat Printsev
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elyas Alalli
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Janine Bilsborough
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Comprehensive analysis of microbiome, metabolome and transcriptome revealed the mechanisms of Moringa oleifera polysaccharide on preventing ulcerative colitis. Int J Biol Macromol 2022; 222:573-586. [PMID: 36115453 DOI: 10.1016/j.ijbiomac.2022.09.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the protective effect of Moringa oleifera polysaccharide (MOP) on ulcerative colitis (UC) and explore its mechanism through the combined analysis of microbiome, metabolome and transcriptome. A UC model in mice was established using dextran sulphate sodium. After a 21-day experiment, results showed that MOP could inhibit the weight loss and disease activity index in UC mice. The intervention of MOP decreased the expression of inflammatory cytokines and promoted the secretion of tight junctions. MOP could promote the growth of probiotics such as Lachnospiraceae_NK4A136, Intestinimonas and Bifidobacterium in UC mice. The results of metabolomic and transcriptomic analysis indicated that MOP could regulated the metabolism of polyunsaturated fatty acid and PPAR, TLR and TNF signalling pathways might play important roles in the process. Altogether, MOP could be used as a functional food to prevent UC.
Collapse
|
7
|
CD30L is involved in the regulation of the inflammatory response through inducing homing and differentiation of monocytes via CCL2/CCR2 axis and NF-κB pathway in mice with colitis. Int Immunopharmacol 2022; 110:108934. [PMID: 35834956 DOI: 10.1016/j.intimp.2022.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) is complex, and dysregulated immune responses play a pivotal role in its occurrence and development. Our previous studies indicated that CD30L may participate in monocyte-mediated inflammation in patients with UC through the activation of circulating monocytes. However, it remains unclear how CD30L participates in monocyte-mediated inflammation in IBD by activation of circulating monocytes. In this study, we observed an increase in the expression of CD30L and chemokine receptor type 2 (CCR2) on circulating monocytes and pro-inflammatory monocytes in the colon lamina propria in mice with dextran sulfate sodium salt (DSS)-induced colitis. Moreover, there was a positive correlation between the expression levels of CCR2 and CD30L (r = 0.8817, p = 0.0480) in monocytes. In Cd30l-/- mice with DSS-induced colitis, the percentage and absolute number of circulating monocytes and pro-inflammatory monocytes decreased with the downregulation of CCR2. Stimulation via CD30L by immobilized anti-CD30L mAb suppressed the expression of pNF-κB p65, pIκBα, p65 and CCR2 and up-regulated the expression of IκBα in the sorted pro-inflammatory monocytes in Cd30l-/- mice with DSS-induced colitis. The mRNA levels of Ccr2 in the sorted pro-inflammatory monocytes were significantly down-regulated with the presence of immobilized RM153 and inhibitors of NF-κB (BAY 11-7082) in WT mice with DSS-induced colitis. Our results suggested that CD30L could promote the inflammatory response by inducing the homing and differentiation of monocytes via the chemokine ligand 2 (CCL2)/CCR2 axis and NF-κB signaling pathway in mice with colitis. These findings provide a novel target for monocyte-based immunotherapy against IBD.
Collapse
|