1
|
Požar M, Friedrich L, Millet T, Paulus M, Sternemann C, Perera A. Microscopic Structure of Neat Linear Alkylamine Liquids: An X-Ray Scattering and Computer Simulation Study. J Phys Chem B 2024; 128:10925-10936. [PMID: 39450652 DOI: 10.1021/acs.jpcb.4c04855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Linear amines, from propylamine to nonylamine, are studied under ambient conditions by X-ray scattering and molecular dynamics simulations of various force field models. The major finding is that the prepeak in alkylamines is about 1 order of magnitude weaker than that in alkanols, hence suggesting much weaker hydrogen bonding-induced clustering of the amine groups than for the hydroxyl groups. Computer simulation studies reveal that the OPLS-UA model reproduces the prepeak, but with larger amplitudes, while the GROMOS-UA and CHARMM-AA force fields show almost no prepeak. Simulations of all models show the existence of hydrogen-bonded clusters, equally confirmed by the prominent prepeak of the structure factor between the nitrogen atoms. The hydrogen bond strength, as modeled by the Coulomb association in classical force field models, is about the same order of magnitude for both systems. Then, one may ask what is the origin of the weaker prepeak in alkylamines? Simulation data reveal that the existence of the prepeak is controlled through the cancellation of the positive contributions from the charged group correlations by the negative contributions from the cross charged-uncharged correlations. The C2v symmetry of the amine headgroup hinders clustering, which favors cross correlations with the tail atoms. This is opposite to alkanols where the symmetry of the hydroxyl headgroup favors clustering and hinders cross correlations with the alkyl tail. This competition between charged and uncharged atomic groups appears as a general mechanism to explain the existence of scattering prepeaks, including their position and amplitude.
Collapse
Affiliation(s)
- Martina Požar
- Faculty of Science, University of Split, Rudera Bos̈kovića 33, 21000 Split, Croatia
| | - Lena Friedrich
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Tristan Millet
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05, France
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05, France
| |
Collapse
|
2
|
Jensen F. Unifying Charge-Flow Polarization Models. J Chem Theory Comput 2023. [PMID: 37365806 DOI: 10.1021/acs.jctc.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We show that several models where electric polarization in molecular systems is modeled by charge-flow between atoms can all be considered as different manifestations of a general underlying mathematical structure. The models can be classified according to whether they employ atomic or bond parameters and whether they employ atom/bond hardness or softness. We show that an ab initio calculated charge response kernel can be considered as the inverse screened Coulombic matrix projected onto the zero-charge subspace, and this may provide a method for deriving charge screening functions to be used in force fields. The analysis suggests that some models contain redundancies, and we argue that a parameterization of charge-flow models in terms of bond softness is preferable as it depends on local quantities and decay to zero upon bond dissociation, while bond hardness depends on global quantities and increases toward infinity upon bond dissociation.
Collapse
Affiliation(s)
- Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus DK-8000, Denmark
| |
Collapse
|
3
|
Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA. Computational Modeling and Simulation of CO2 Capture by Aqueous Amines. Chem Rev 2017; 117:9524-9593. [PMID: 28517929 DOI: 10.1021/acs.chemrev.6b00662] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- College
of Chemistry, Key Lab of Green Chemistry and Technology in Ministry
of Education, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Robert J. Rees
- Data61
- CSIRO, Door 34 Goods
Shed, Village Street, Docklands VIC 3008, Australia
| | | | | | - Qi Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
| | - David A. Winkler
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- Monash Institute of Pharmaceutical Sciences, 392 Royal Parade, Parkville 3052, Australia
- Latrobe Institute for Molecular Science, Bundoora 3046, Australia
- School
of
Chemical and Physical Science, Flinders University, Bedford Park 5042, Australia
| |
Collapse
|
4
|
Verstraelen T, Vandenbrande S, Ayers PW. Direct computation of parameters for accurate polarizable force fields. J Chem Phys 2015; 141:194114. [PMID: 25416881 DOI: 10.1063/1.4901513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham Density Functional Theory (DFT), approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization, and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.
Collapse
Affiliation(s)
- Toon Verstraelen
- Center for Molecular Modeling (CMM), Member of the QCMM Ghent-Brussels Alliance, Ghent University, Technologiepark 903, B9000 Ghent, Belgium
| | - Steven Vandenbrande
- Center for Molecular Modeling (CMM), Member of the QCMM Ghent-Brussels Alliance, Ghent University, Technologiepark 903, B9000 Ghent, Belgium
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
5
|
|
6
|
Khanlarzadeh K, Iloukhani H. Experimental and theoretical study on excess molar enthalpy of binary mixtures containing isobutanol (1)+alkan-1-ols (C1–C4) (2) at T=298.15K. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M. ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order. J Chem Phys 2013; 138:074108. [DOI: 10.1063/1.4791569] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Correlation of excess molar enthalpies of cyclopentanone (1)+1-alkanols (C1–C5) (2) by Peng–Robinson–Stryjek–Vera equation of state and ERAS-model. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2012.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Bauer BA, Patel S. Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1153-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Lucas TR, Bauer BA, Patel S. Charge equilibration force fields for molecular dynamics simulations of lipids, bilayers, and integral membrane protein systems. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:318-29. [PMID: 21967961 PMCID: PMC4216680 DOI: 10.1016/j.bbamem.2011.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/06/2023]
Abstract
With the continuing advances in computational hardware and novel force fields constructed using quantum mechanics, the outlook for non-additive force fields is promising. Our work in the past several years has demonstrated the utility of polarizable force fields, those based on the charge equilibration formalism, for a broad range of physical and biophysical systems. We have constructed and applied polarizable force fields for lipids and lipid bilayers. In this review of our recent work, we discuss the formalism we have adopted for implementing the charge equilibration (CHEQ) method for lipid molecules. We discuss the methodology, related issues, and briefly discuss results from recent applications of such force fields. Application areas include DPPC-water monolayers, potassium ion permeation free energetics in the gramicidin A bacterial channel, and free energetics of permeation of charged amino acid analogs across the water-bilayer interface. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Timothy R. Lucas
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Brad A. Bauer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
11
|
Orozco GA, Nieto-Draghi C, Mackie AD, Lachet V. Transferable Force Field for Equilibrium and Transport Properties in Linear, Branched, and Bifunctional Amines I. Primary Amines. J Phys Chem B 2011; 115:14617-25. [DOI: 10.1021/jp207601q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gustavo A. Orozco
- IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
- Departament d’Enginyeria Química, ETSEQ, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007 Tarragona, Spain
| | - Carlos Nieto-Draghi
- IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Allan D. Mackie
- Departament d’Enginyeria Química, ETSEQ, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007 Tarragona, Spain
| | - Véronique Lachet
- IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| |
Collapse
|
12
|
Feng H, Liu X, Gao W, Chen X, Wang J, Chen L, Lüdemann HD. Evolution of self-diffusion and local structure in some amines over a wide temperature range at high pressures: a molecular dynamics simulation study. Phys Chem Chem Phys 2010; 12:15007-17. [DOI: 10.1039/c0cp00337a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Bauer BA, Warren GL, Patel S. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface. J Chem Theory Comput 2009; 5:359-373. [PMID: 23133341 PMCID: PMC3488353 DOI: 10.1021/ct800320f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed.
Collapse
Affiliation(s)
- Brad A. Bauer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - G. Lee Warren
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|