1
|
Zhang L, Yan W, Kohtani S, Fukuyoshi S, Hu M, Nagao S, Tang N. Promotive effects of marine-derived dimethyl sulfoxide on the photodegradation of phenanthrene in the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171938. [PMID: 38527541 DOI: 10.1016/j.scitotenv.2024.171938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Dimethyl sulfoxide (DMSO), a versatile medium, is a particular component in the marine atmosphere that possibly causes polycyclic aromatic hydrocarbons (PAHs) to degrade differently than they do in the continental atmosphere. In this study, phenanthrene (Phe) was used as a model PAH in batch photochemical experiments to investigate the chemical actions of DMSO and the underlying mechanisms. The photodegradation of Phe in aqueous solutions with DMSO volume fractions from 0 % to 100 % was initiated by ultraviolet (UV) radiation and promoted by singlet oxygen, which was consistent with pseudo-first-order kinetics. Phe photodegraded faster in a mixture of DMSO and water than in water or DMSO alone, and the rate constant showed a unimodal distribution over the DMSO fraction range, peaking at 33 % DMSO (0.0333 ± 0.0009 min-1) and 40 % DMSO (0.0199 ± 0.0005 min-1) under 254 nm and 302 nm UV radiation, respectively. This interesting phenomenon was attributed to the competition of DMSO for UV radiation and singlet oxygen and changes in dissolved oxygen and free water contents caused by the interaction between DMSO and water molecules. In addition, 9,10-phenanthrenequinone (9,10-PhQ) with high cytotoxicity was the main photodegradation product of Phe under various conditions. The photodegradation rate of Phe in the mixtures of DMSO and water was comparable to its reaction rate with OH radicals, suggesting that 9,10-PhQ can be rapidly generated in the marine atmosphere, driven by a mechanism different from that in the continental or urban atmosphere. Under the presented experimental conditions, UV intensity and DMSO fraction were the primary factors that affected the photodegradation rate of Phe and 9,10-PhQ and altered their integrated toxicity. The findings of this study support the conclusion that the marine atmosphere is an essential field in the atmospheric transport of PAHs, in which DMSO is an important component that affects their photodegradation.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Ecological Remediation of Lakes and Rivers and Algal Utilization of Hubei Province, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Wenwen Yan
- Key Laboratory of Ecological Remediation of Lakes and Rivers and Algal Utilization of Hubei Province, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.
| | - Shigeru Kohtani
- Faculty of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Kobe 650-8530, Japan.
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Seiya Nagao
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; College of Energy and Power, Shenyang Institute of Engineering, Shenyang 110136, China.
| |
Collapse
|
2
|
Anand G, Safaripour S, Snoeyink C. Novel Raman Spectroscopy Method for Solutions in Uniform, High-Strength Electric Field. APPLIED SPECTROSCOPY 2023:37028231175178. [PMID: 37211622 DOI: 10.1177/00037028231175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel method of measuring the influence of high electric fields on the Raman scattering of fluids is introduced, which can help understand various interactions of a fluid with the high electric field. The microfluidic chip can impose highly controlled, uniform electric fields across the measurement volume with blocked electrodes, eliminating spurious reactions at the electrode surface. The developed methodology and the experimental setup are utilized to examine the effect of the electric field on three of the stretching vibrations of ethanol in water-ethanol mixtures with varying concentrations of ethanol and effective electric fields up to 1.0MV/m. The increase in the electric field is seen to broadly decrease the intensity of Raman scattering due to a decrease in the polarizability of the ethanol molecules. Although this effect is uniform for all water-ethanol mixtures, it reduces in mixtures with high weight-fractions of water because of the already reduced polarizability of an ethanol molecule due to hydrogen bonding. The combined effect of hydrogen bonding and increase in temperature due to the alternating high electric field even results in an increase in the magnitude of peak intensity for relatively low-weight fractions of ethanol.
Collapse
Affiliation(s)
- Gaurav Anand
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Samira Safaripour
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig Snoeyink
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
3
|
Robertson H, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Cosolvent effects on the structure and thermoresponse of a polymer brush: PNIPAM in DMSO–water mixtures. Polym Chem 2023. [DOI: 10.1039/d2py01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Structural characterisation of thermoresponsive polymer brushes in binary DMSO–water mixtures reveals both LCST and UCST behaviour.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| | | | | | - Grant B. Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| | - Erica J. Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| |
Collapse
|
4
|
Nichiporenko VA, Kadtsyn ED, Medvedev NN. SIMPLE METHOD TO MODIFY FORCE FIELDS FOR THE MOLECULAR DYNAMICS SIMULATION OF AQUEOUS ALCOHOL SOLUTIONS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Śmiechowski M. The influence of intermolecular correlations on the infrared spectrum of liquid dimethyl sulfoxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119869. [PMID: 34015747 DOI: 10.1016/j.saa.2021.119869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Dimethyl sulfoxide (DMSO) is routinely applied as an excellent, water-miscible solvent and chemical reagent. Some of the most important data concerning its liquid structure were obtained using infrared (IR) spectroscopy. However, the actual extent of intermolecular correlations that connect the isolated monomer spectrum to the IR response of the bulk liquid is poorly studied thus far. Using ab initio molecular dynamics (AIMD) simulations, IR spectra of liquid DMSO are obtained here from first principles and further analyzed using an array of sophisticated spectral decomposition techniques. The calculated spectra when unfolded in space reveal non-trivial spatial correlations underlying the IR response of liquid DMSO. It is unequivocally demonstrated that some of the fundamental vibrations visible in the intramolecular limit are effectively suppressed by the solvation environment due to symmetry reasons and thus disappear in the bulk limit, escaping experimental detection. Overall, DMSO as an aprotic solvent with dominant dipole-dipole interactions displays strong intermolecular correlations that contribute significantly to the IR spectra, on par with the situation observed in strongly associated liquids, such as water.
Collapse
Affiliation(s)
- Maciej Śmiechowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
6
|
Fatima S, Varras PC, Atia-Tul-Wahab, Choudhary MI, Siskos MG, Gerothanassis IP. On the molecular basis of H 2O/DMSO eutectic mixtures by using phenol compounds as molecular sensors: a combined NMR and DFT study. Phys Chem Chem Phys 2021; 23:15645-15658. [PMID: 34268541 DOI: 10.1039/d0cp05861k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR and DFT studies of phenol compounds as molecular sensors were carried out to investigate H2O/DMSO eutectic mixtures at a molecular level. The experimental 1H NMR chemical shifts of the OH groups, δexp(OH), of phenol, paracoumaric acid, and vanillic acid show maximum deshielding and, thus, hydrogen bond interactions in the range of mole fractions 0.20 < χ(DMSO) < 0.33. In the mole fractions χ(DMSO) < 0.2, a progressive decrease in δexp(OH) was observed which demonstrates a decrease in hydrogen bond interactions at infinite dilution in H2O, despite the increase in the number of available hydrogen bond acceptor and donor sites. DFT calculated δcalc(OH) of minimum energy solvation clusters were shown to be in reasonable agreement with the pattern in experimental δexp(OH) data. The chemical shift deshielding and, thus, increased hydrogen bond interactions in the natural product + DMSO + nH2O (n = 2, 3) solvation clusters, relative to complexes in DMSO or H2O solutions, cannot be attributed to a single structural parameter of the cooperative interactions between H2O and DMSO molecules with the phenol OH groups of the natural products. The minimum energy conformers of phenol compounds + 2H2O + DMSO complexes are in excellent agreement with a recent low temperature neutron diffraction experiment of 3D2O + DMSO and demonstrate a general structural motif of solvation complexes. The combined use of 1H NMR and DFT studies with emphasis on δ(OH) of phenol compounds, as molecular sensors, can provide an effective method for the study of solute-solvent interactions at the atomic level.
Collapse
Affiliation(s)
- Sana Fatima
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan
| | | | | | | | | | | |
Collapse
|
7
|
Fortes AD, Ponsonby J, Kirichek O, García-Sakai V. On the crystal structures and phase transitions of hydrates in the binary dimethyl sulfoxide–water system. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2020; 76:733-748. [DOI: 10.1107/s2052520620008999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 11/10/2022]
Abstract
Neutron powder diffraction data have been collected from a series of flash-frozen aqueous solutions of dimethyl sulfoxide (DMSO) with concentrations between 25 and 66.7 mol% DMSO. These reveal the existence of three stoichiometric hydrates, which crystallize on warming between 175 and 195 K. DMSO trihydrate crystallizes in the monoclinic space group P21/c, with unit-cell parameters at 195 K of a = 10.26619 (3), b = 7.01113 (2), c = 10.06897 (3) Å, β = 101.5030 (2)° and V = 710.183 (3) Å3 (Z = 4). Two of the symmetry-inequivalent water molecules form a sheet of tiled four- and eight-sided rings; the DMSO molecules are sandwiched between these sheets and linked along the b axis by the third water molecule to generate water–DMSO–water tapes. Two different polymorphs of DMSO dihydrate have been identified. The α phase is monoclinic (space group P21/c), with unit-cell parameters at 175 K of a = 6.30304 (4), b = 9.05700 (5), c = 11.22013 (7) Å, β = 105.9691 (4)° and V = 615.802 (4) Å3 (Z = 4). Its structure contains water–DMSO–water chains, but these are polymerized in such a manner as to form sheets of reniform eight-sided rings, with the methyl groups extending on either side of the sheet. On warming above 198 K, α-DMSO·2H2O undergoes a solid-state transformation to a mixture of DMSO·3H2O + anhydrous DMSO, and there is then a stable eutectic between these two phases at ∼203 K. The β-phase of DMSO dihydrate has been observed in a rapidly frozen eutectic melt and in very DMSO-rich mixtures. It is observed to be unstable with respect to the α-phase; above ∼180 K, β-DMSO·2H2O converts irreversibly to α-DMSO·2H2O. At 175 K, the lattice parameters of β-DMSO·2H2O are a = 6.17448 (10), b = 11.61635 (16), c = 8.66530 (12) Å, β = 101.663 (1)° and V = 608.684 (10) Å3 (Z = 4), hence this polymorph is just 1.16% denser than the α-phase under identical conditions. Like the other two hydrates, the space group appears likely, on the basis of systematic absences, to be P21/c, but the structure has not yet been determined. Our results reconcile 60 years of contradictory interpretations of the phase relations in the binary DMSO–water system, particularly between mole fractions of 0.25–0.50, and confirm empirical and theoretical studies of the liquid structure around the eutectic composition (33.33 mol% DMSO).
Collapse
|
8
|
Yang B, Cao X, Wang C, Wang S, Sun C. Investigation of hydrogen bonding in Water/DMSO binary mixtures by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117704. [PMID: 31753642 DOI: 10.1016/j.saa.2019.117704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Raman spectra of water/dimethyl sulfoxide (DMSO) mixtures have been observed at room temperature and atmospheric pressure. We find that the Raman peaks corresponding to the symmetric and asymmetric O-H stretching vibration mode of water rapidly move to lower wavenumber with increasing DMSO concentration. These results indicate that the strong hydrogen bond between DMSO-water complexes helps to strengthen the tetrahedral structure of water when the volume fraction of DMSO is less than 0.6. Moreover, the blue/red shifts of SO and C-H are obvious when the concentration of DMSO reaches 0.6, which may be due to changes in the structure of the DMSO-water complex. Furthermore, the frequency shift of the C-H group indicates that the non-polar methyl group of DMSO forms a hydrophobic hydrated structure. Finally, the frequency shift of the Raman peaks of SO and C-H exhibited a highly consistent concentration dependence due to the cooperation effect of the C-H⋯O with the O-H⋯OS.
Collapse
Affiliation(s)
- Bo Yang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun, 130012, China
| | - Xianwen Cao
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun, 130012, China
| | - Chong Wang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun, 130012, China
| | - Shenghan Wang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun, 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Chenglin Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun, 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Development of force fields for binary systems: Application to a dimethylsulfoxide (DMSO) – Oxygen mixture. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Kiefer J. Comment on “Red/blue shifting hydrogen bonds in acetonitrile – Dimethyl sulphoxide solutions: FTIR and theoretical studies” DOI: 10.1016/j.molstruc.2017.03.036. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Nastasa V, Pascu A, Boni M, Smarandache A, Staicu A, Pascu M. Insights into the photophysics of zinc phthalocyanine and photogenerated singlet oxygen in DMSO-water mixture. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Chaban VV. Force field development and simulations of senior dialkyl sulfoxides. Phys Chem Chem Phys 2016; 18:10507-15. [DOI: 10.1039/c5cp08006a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thermodynamics, structure, and dynamics of diethyl sulfoxide (DESO) and ethyl methyl sulfoxide (EMSO) were investigated using ab initio calculations and non-polarizable potential based molecular dynamics (MD) simulations.
Collapse
|
13
|
Excess properties of non-ideal binary mixtures containing water, methanol and ethanol by molecular simulation. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Idrissi A, Marekha B, Kiselev M, Jedlovszky P. The local environment of the molecules in water–DMSO mixtures, as seen from computer simulations and Voronoi polyhedra analysis. Phys Chem Chem Phys 2015; 17:3470-81. [DOI: 10.1039/c4cp04839c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The local structure of DMSO–water mixtures is studied by computer simulation and Voronoi analysis.
Collapse
Affiliation(s)
- Abdenacer Idrissi
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS A8516)
- Université Lille 1
- Science et Technologies
- 59655 Villeneuve d'Ascq Cedex
- France
| | - B. Marekha
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS A8516)
- Université Lille 1
- Science et Technologies
- 59655 Villeneuve d'Ascq Cedex
- France
| | - M. Kiselev
- Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | - Pál Jedlovszky
- Laboratory of Interfaces and Nanosize Systems
- Institute of Chemistry
- Eötvös Loránd University
- H-1117 Budapest
- Hungary
| |
Collapse
|
15
|
Bachmann SJ, van Gunsteren WF. Polarizable Model for DMSO and DMSO–Water Mixtures. J Phys Chem B 2014; 118:10175-86. [DOI: 10.1021/jp5035695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
|
17
|
Noack K, Kiefer J, Leipertz A. Concentration-Dependent Hydrogen-Bonding Effects on the Dimethyl Sulfoxide Vibrational Structure in the Presence of Water, Methanol, and Ethanol. Chemphyschem 2009; 11:630-7. [DOI: 10.1002/cphc.200900691] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Archambault F, Chipot C, Soteras I, Luque FJ, Schulten K, Dehez F. Polarizable intermolecular potentials for water and benzene interacting with halide and metal ions. J Chem Theory Comput 2009; 5:3022-3031. [PMID: 21113276 DOI: 10.1021/ct9004189] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A complete derivation of polarizable intermolecular potentials based on high-level, gas-phase quantum-mechanical calculations is proposed. The importance of appreciable accuracy together with inherent simplicity represents a significant endeavor when enhancement of existing force fields for biological systems is sought. Toward this end, symmetry-adapted perturbation theory (SAPT) can provide an expansion of the total interaction energy into physically meaningful e.g. electrostatic, induction and van der Waals terms. Each contribution can be readily compared with its counterpart in classical force fields. Since the complexity of the different intermolecular terms cannot be fully embraced using a minimalist description, it is necessary to resort to polyvalent expressions capable of encapsulating overlooked contributions from the quantum-mechanical expansion. This choice results in consistent force field components that reflect the underlying physical principles of the phenomena. This simplified potential energy function is detailed and definitive guidelines are drawn. As a proof of concept, the methodology is illustrated through a series of test cases that include the interaction of water and benzene with halide and metal ions. In each case considered, the total energy is reproduced accurately over a range of biologically relevant distances.
Collapse
Affiliation(s)
- Fabien Archambault
- Équipe de dynamique des assemblages membranaires, UMR 7565, Nancy Université, BP 239, 54506 Vandœuvre-lès-nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Dielectric properties of binary solvent mixtures of dimethyl sulfoxide with water. Int J Mol Sci 2009; 10:1261-70. [PMID: 19399247 PMCID: PMC2672028 DOI: 10.3390/ijms10031261] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/08/2009] [Accepted: 03/11/2009] [Indexed: 12/03/2022] Open
Abstract
In this paper, the dielectric properties of water-dimethylsulfoxide (DMSO) mixtures with different mole ratios have been investigated in the range of 1 GHz to 40 GHz at 298 K by using a molecular dynamics (MD) simulation. Only one dielectric loss peak was observed in the frequency range and the relaxation in these mixtures can be described by a single relaxation time of the Davidson-Cole. It was observed that within experimental error the dielectric relaxation can be described by the Debye-like model (β ≈ 1, S.M. Puranik, et al. J. Chem. Soc. Faraday Trans.1992, 88, 433 – 435). In general, the results are very consistent with the experimental measurements.
Collapse
|