1
|
Wu L, Liu Y, Wang X, Li M, Li J, Zhang X, Gao D, Li H. Recognizing Functional Groups of MES/APG Mixed Surfactants for Enhanced Solubilization toward Benzo[ a]pyrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8565-8575. [PMID: 38575864 DOI: 10.1021/acs.est.3c10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Benzo[a]pyrene is difficult to remove from soil due to its high octanol/water partition coefficient. The use of mixed surfactants can increase solubility but with the risk of secondary soil contamination, and the compounding mechanism is still unclear. This study introduced a new approach using environmentally friendly fatty acid methyl ester sulfonate (MES) and alkyl polyglucoside (APG) to solubilize benzo[a]pyrene. The best result was obtained when the ratio of MES/APG was 7:1 under 6 g/L total concentration, with an apparent solubility (Sw) of 8.58 mg/L and a molar solubilization ratio (MSR) of 1.31 for benzo[a]pyrene, which is comparable to that of Tween 80 (MSR, 0.95). The mechanism indicates that the hydroxyl groups (-OH) in APG form "O-H···OSO2-" hydrogen bonding with the sulfonic acid group (-SO3-) of MES, which reduces the electrostatic repulsion between MES molecules, thus facilitating the formation of large and stable micelles. Moreover, the strong solubilizing effect on benzo[a]pyrene should be ascribed to the low polarity of ester groups (-COOCH3) in MES. Functional groups capable of forming hydrogen bonds and having low polarity are responsible for the enhanced solubilization of benzo[a]pyrene. This understanding helps choose suitable surfactants for the remediation of PAH-contaminated soils.
Collapse
Affiliation(s)
- Liyuan Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Yaxin Liu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Xin Wang
- China National Nuclear Corporation Dadi Ecological Technology Co., Ltd., Beijing 100010, China
| | - Mengrui Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Jingya Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Xiaoran Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Haiyan Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| |
Collapse
|
2
|
Rashid S, Tak UN, Lone MS, Chat OA, Bhat PA, Ahanger FA, Bhat IA, Dar AA. Effect of in situ mixed micellization of ester-functionalized gemini surfactant at different pHs on solubilization and cosolubilization of various polycyclic aromatic hydrocarbons of varying hydrophobicities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122489. [PMID: 37666460 DOI: 10.1016/j.envpol.2023.122489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
A pH controlled cleavability unfolds the 3-in-1 surfactant feature of an ester-bonded gemini surfactant, 2, 2'-[(oxybis (ethane-1,2-diyl))bis (oxy)]bis (N-hexadecyl-N,Ndimethyl-2-oxoethanaminium) dichloride (C16-C4O2-C16), by reinforcing in-situ mixed micellization between cleaved components at non-neutral pH (pH 3,12). The triplicity is assigned to two mixed-micelle variants at pH 3 and pH 12 besides the unhydrolyzed C16-C4O2-C16 at pH 7. The pH-controlled aggregation of such trichotomic surfactant dramatically enhances the micellar solubilization/cosolubilization of PAHs viz. naphthalene (Np), phenanthrene (Ph), pyrene (Py), perylene (Pe). The cosolubilization of binary/ternary PAH mixtures in such remarkable micellar assemblies at pH 3, 7 and 12 yields intriguing synergistic or antagonistic solubility outcomes correlated to PAH-PAH and PAH-micelle interactions. This study provides valuable insights into the potential applications of the ester-bonded gemini surfactant for the cosolubilization of undesirable hydrophobic compounds at natural sites having variable pH.
Collapse
Affiliation(s)
- Showkat Rashid
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Umar Nabi Tak
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Mohd Sajid Lone
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Oyais Ahmad Chat
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India; Department of Chemistry, Government Degree College Kupwara, J&K, 193222, India
| | - Parvaiz Ahmad Bhat
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India; Department of Chemistry, Government Degree College Pulwama, 192301, J & K, India
| | - Firdaus Ahmad Ahanger
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Imtiyaz Ahmad Bhat
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| |
Collapse
|
3
|
Naqvi AZ, Kabir-ud-Din, Panda M. Mixed micellization: Improved physicochemical behavior of different amphiphiles in presence of gemini surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Sun Y, Zou M, Li C, Li X, Mao T, Zheng C. The solubilization of naphthalene using tea saponin as a biosurfactant: Effect of temperature. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Fernandes S, Nogueira V, Antunes F, Lopes I, Pereira R. Studying the toxicity of SLE nS-LAS micelles to collembolans and plants: Influence of ethylene oxide units in the head groups. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122522. [PMID: 32200241 DOI: 10.1016/j.jhazmat.2020.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Mixed micelles of linear alkylbenzene sulfonic acid (LAS) and ether sulfate-based surfactants (SLEnS) can be added in household products and cleaning agents. SLEnS with higher ethylene oxide (EO) units in the head groups have economic and environmental advantages. This work aims to assess the influence of the number of EO units in the ecotoxicity of seven variants of SLEnS-LAS micelles (0-50 EO units) in soils. Ecotoxicological tests were carried out to assess emergence and growth of four plants species and reproduction of collembolans. Most of the variants inhibited plants growth at the highest concentrations (1237.5 μg SLEnS kg-1 of soildw). For reproduction, lower number of EO units resulted in EC50 from 924.2 (95 % CL: 760.7-1063.4) to 963.2 (95 % CL: 676.9-1249.6) μg SLEnS kg-1 of soildw, whereas for higher number of EO units (50 and 30) no inhibition was reported. Based on these results, we suggest that a higher number of EO units contribute to less hazardous formulations, confirming that different designs of surfactants may contribute to changes in the responses of terrestrial organisms. Therefore, we demonstrate that standardized ecotoxicological assays may contribute to more sustainable and effective formulations, when used upstream, prior to manufacture and marketing.
Collapse
Affiliation(s)
- S Fernandes
- GreenUPorto - Sustainable Agrifood Production Research Center and Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal.
| | - V Nogueira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research and Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - F Antunes
- Department of Chemical Engineering & Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Coimbra, Portugal
| | - I Lopes
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - R Pereira
- GreenUPorto - Sustainable Agrifood Production Research Center and Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| |
Collapse
|
6
|
Exploring the effect of hydrophobic ionic liquid on aggregation, micropolarity and microviscosity properties of aqueous SDS solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Panda M, Chandel TI, Kamil M, Khan RH. Fluorescence quenching of chloroquine by Cu2+ in micelles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Liang Y, Zhang S, Li H, Mao X, Li Y, Xie X, Ren J, Li G, Lian R. Solubilization of polycyclic aromatic hydrocarbons by novel ester-bonded Gemini prolinol-based surfactant and its binary mixtures with conventional surfactants. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yaqin Liang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Shuping Zhang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Hui Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xiaoming Mao
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Yan Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xuanjie Xie
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Jiaqi Ren
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Gang Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Rui Lian
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| |
Collapse
|
9
|
Bhardwaj P, Kamil M, Panda M. Salt Effect on the Solution Properties of Cationic Gemini/Conventional Surfactants in the Presence of the Nonionic Polymer Hydroxypropylmethyl Cellulose. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prashant Bhardwaj
- Department of Petroleum StudiesAligarh Muslim University Aligarh 202002 India
| | - Mohammad Kamil
- Department of Petroleum StudiesAligarh Muslim University Aligarh 202002 India
| | - Manorama Panda
- Department of Petroleum StudiesAligarh Muslim University Aligarh 202002 India
| |
Collapse
|
10
|
Bhardwaj P, Kamil M, Panda M. Surfactant-polymer interaction: effect of hydroxypropylmethyl cellulose on the surface and solution properties of gemini surfactants. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4409-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Panda M, Kamil M. Formation of Mixed Micelles of the Environmentally Acceptable Oxy-Diester-Linked Gemini Surfactants with Brij 58. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Three oxy-diester-linked cationic gemini surfactants (2,2′-[(oxybis(ethane-1,2-diyl))bis(oxy)]bis(N-alkyl-N,N-dimethyl-2-oxoethanaminium) dichloride, Cm-DEG-Cm (m = 12, 14, 16), were synthesized. The physicochemical properties of the gemini surfactants and their mixtures with Brij 58 were studied by surface tension measurements at various mole fractions and 30°C. The critical micelle concentration (CMC) of the gemini surfactants are smaller than that of their corresponding single-chain counterparts having the same number of carbon atoms in the hydrophobic tail versus polar head. At all investigated compositions, the experimentally obtained CMC values of the surfactant mixtures are smaller than the CMCideal (ideal CMC – CMC of the solution at ideal state); the lower CMC of the mixed systems compared to those the individual surfactants and the negative β values (for both the mixed micelles and monolayers) indicate a synergistic interaction among both the surfactant components. The interaction parameters (βm and βσ) of the mixed surfactant systems were evaluated by using theoretical models. Negative values of β imply an overall attractive force in the mixed state. Also, the free excess energy of mixing was found to be negative for all the systems.
Collapse
|
12
|
Fatma N, Panda M, Kabir-ud-Din. Solubility Enhancement of Polycyclic Aromatic Hydrocarbons by an Eco-Friendly Ester-Linked Gemini Surfactant and its Mixtures with Conventional Surfactants. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe present study deals with the solubility enhancement of the two polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in the aqueous micellar system of the cationic ester-containing cleavable gemini surfactant ethane-1,2-diyl-bis(N,N-dimethyl-N-tetradecylammoniumacetoxy) dichloride (14-E2-14 = C14H29(CH3)2N+(CH2COOCH2)2N+(CH3)2C14H29 · 2Cl−)), and its equimolar binary mixtures with some typical conventional cationic, anionic and non-ionic surfactants. The surface tension and conductivity measurements were used to evaluate the physicochemical parameters such as the critical micelle concentration (CMC), the interaction parameter (βm) and Gibbs excess free energy of micellization (ΔGexm) of the systems. The extent of solubilization of the micellar systems towards PAHs has been quantified in terms of molar solublization ratio (MSR), micellar/water partition coefficient (ln Km) and the standard Gibbs free energy of solubilization (ΔGs0). Above the CMC, all studied single as well as binary gemini-conventional surfactant systems show an increase in solubilization of the PAHs. For pure systems, the MSR value of Brij 58 was found to be significantly higher than that of the other amphiphiles. Amongst the mixed surfactant systems, the solubility enhancement of anthracene is found to be maximum in the 14-E2-14 + SDS/SDBS system whereas the system14-E2-14 + Brij 58 shows a higher solubility for pyrene.
Collapse
|
13
|
Poša M. Introduction of the novel coefficient of interaction in the micellar co-solubilisation of the binary mixture of structurally different solubilizates: Thermodynamic of the micellar co-solubilisation – A pseudophase approximation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Interaction of oxy-diester-linked cationic gemini surfactants with nonionic amphiphiles in aqueous medium. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4203-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
An investigation of kinetic and physicochemical properties of vesicular surfactants with oximate and hydroxamate ions: Hydrolytic reactions of organophosphorus pesticides. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Singh S, Bhadoria A, Parikh K, Yadav SK, Kumar S, Aswal VK, Kumar S. Self-Assembly in Aqueous Oppositely Charged Gemini Surfactants: A Correlation between Morphology and Solubilization Efficacy. J Phys Chem B 2017; 121:8756-8766. [DOI: 10.1021/acs.jpcb.7b03989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sneha Singh
- Applied Chemistry
Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India
| | - Arti Bhadoria
- Applied Chemistry
Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India
| | - Kushan Parikh
- Department of Applied Science, Faculty of Life, Health & Applied Science, ITM Vocational University, Vadodara 391 760, India
| | - Sanjay Kumar Yadav
- Soft
Material Research Laboratory, Department of Chemistry, Faculty of
Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sugam Kumar
- Solid State Physics
Divison, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - V. K. Aswal
- Solid State Physics
Divison, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sanjeev Kumar
- Applied Chemistry
Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India
| |
Collapse
|
17
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 199:46-61. [PMID: 28527375 DOI: 10.1016/j.jenvman.2017.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
18
|
Yadav SK, Parikh K, Kumar S. Mixed micelle formation of cationic gemini surfactant with anionic bile salt: a PAH solubilization study. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Comelles F, Ribosa I, Gonzalez JJ, Garcia MT. Hexadecyltrimethylammonium bromide (CTA-Br) and 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF4) in aqueous solution: An ephemeral binary system. J Colloid Interface Sci 2017; 490:119-128. [DOI: 10.1016/j.jcis.2016.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
20
|
Yadav SK, Parikh K, Kumar S. Solubilization potentials of single and mixed oppositely charged gemini surfactants: A case of polycyclic aromatic hydrocarbons. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Serdyuk AA, Mirgorodskaya AB, Kapitanov IV, Gathergood N, Zakharova LY, Sinyashin OG, Karpichev Y. Effect of structure of polycyclic aromatic substrates on solubilization capacity and size of cationic monomeric and gemini 14-s-14 surfactant aggregates. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Satnami ML, Dewangan HK, Kandpal N, Nagwanshi R, Ghosh KK. Influence of octanohydroxamic acid on the association behavior of cationic surfactants: Hydrolytic cleavage of phosphate ester. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed micelles composed of a photoresponsive surfactant and a conventional non-ionic surfactant. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Effect of Polar Organic Solvents on Self-Aggregation of Some Cationic Monomeric and Dimeric Surfactants. J SURFACTANTS DETERG 2015. [DOI: 10.1007/s11743-015-1686-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Yadav T, Tikariha D, Lakra J, Satnami ML, Tiwari AK, Saha SK, Ghosh KK. Solubilization of polycyclic aromatic hydrocarbons in structurally different gemini and monomeric surfactants: A comparative study. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Long J, Tian S, Niu Y, Jin Y, Li L. Electrochemically Reversible Solubilization of Polycyclic Aromatic Hydrocarbons by Mixed Micelles Composed of Redox-active Cationic Surfactant and Conventional Nonionic Surfactant. Polycycl Aromat Compd 2015. [DOI: 10.1080/10406638.2014.939767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Mirgorodskaya AB, Karpichev Y, Zakharova LY, Yackevich EI, Kapitanov IV, Lukashenko SS, Popov AF, Konovalov AI. Aggregation behavior and interface properties of mixed surfactant systems gemini 14-s-14/CTABr. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Azum N, Rub MA, Asiri AM. Experimental and theoretical approach to mixed surfactant system of cationic gemini surfactant with nonionic surfactant in aqueous medium. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Srivastava A, Ismail K. Solubilization of polycyclic aromatic hydrocarbons in aqueous sodium dioctylsulfosuccinate solutions. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Lakra J, Tikariha D, Yadav T, Das S, Ghosh S, Satnami ML, Ghosh KK. Mixed micellization of gemini and cationic surfactants: Physicochemical properties and solubilization of polycyclic aromatic hydrocarbons. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Solubilization of polycyclic aromatic hydrocarbons by gemini–conventional mixed surfactant systems. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Jalilnejad E, Vahabzadeh F. Models for the Biodegradation Kinetics of Naphthalene byRalstonia Eutropha. Polycycl Aromat Compd 2013. [DOI: 10.1080/10406638.2013.810652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Lakra J, Tikariha D, Yadav T, Satnami ML, Ghosh KK. Study of Solubility Efficiency of Polycyclic Aromatic Hydrocarbons in Single Surfactant Systems. J SURFACTANTS DETERG 2013. [DOI: 10.1007/s11743-013-1507-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Kamil M, Siddiqui H. Experimental Study of Surface and Solution Properties of Gemini -conventional Surfactant Mixtures on Solubilization of Polycyclic Aromatic Hydrocarbon. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/mnsms.2013.34b004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|