1
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Kimura Y, Akai R, Shimada K, Hirata M, Fujii K, Endo T. Anomalous Dependence of Translational Diffusion on the Water Mole Fraction for Solute Molecules Dissolved in a 1-Butyl-3-methylimidazolium Tetrafluoroborate/Water Mixture. J Phys Chem B 2023. [PMID: 37310854 DOI: 10.1021/acs.jpcb.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Translational diffusion coefficients of carbon monoxide (CO), diphenylacetylene (DPA), and diphenylcyclopropenone (DPCP) were determined in mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]BF4) and water using transient grating spectroscopy at different mole fractions of water (xw). While DPA exhibited a larger diffusion coefficient than DPCP at low water mole fractions (xw < 0.7), as observed for conventional liquids and ionic liquids (ILs), it was smaller at high mole fractions (xw > 0.9). The apparent molecular radius of DPA determined using the Stokes-Einstein equation at xw > 0.9 is close to the radius of an IL cluster in a water pool as determined from small-angle neutron scattering experiments (J. Bowers et al., Langmuir, 2004, 20, 2192-2198), suggesting that the DPA molecules are trapped in IL clusters in the water pool and move together. The solvation state of DPCP in the mixture was studied using Raman spectroscopy. Dramatically strong water/DPCP hydrogen bonding was observed at higher water mole fractions, suggesting that DPCP is located near the cluster interfaces. The large diffusion coefficient of DPCP suggests that hopping of DPCP between IL clusters occurs through hydrogen bonding with water.
Collapse
Affiliation(s)
- Yoshifumi Kimura
- Division of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 2-1, Tatara Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 2-1, Tatara Miyakodani, Kyotanabe-City 610-0321, Kyoto, Japan
| | - Rie Akai
- Division of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 2-1, Tatara Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| | - Kohei Shimada
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 2-1, Tatara Miyakodani, Kyotanabe-City 610-0321, Kyoto, Japan
| | - Mizuki Hirata
- Division of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 2-1, Tatara Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| | - Kaori Fujii
- Division of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 2-1, Tatara Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| | - Takatsugu Endo
- Division of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 2-1, Tatara Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| |
Collapse
|
3
|
Patil KR, Barge SS, Bhosale BD, Dagade DH. Influence of protic ionic liquids on hydration of glycine based peptides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120378. [PMID: 34543989 DOI: 10.1016/j.saa.2021.120378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The structure of water, especially around the solute is thought to play an important role in many biological and chemical processes. Water-peptide and cosolvent-peptide interactions are crucial in determining the structure and function of protein molecules. In this work, we present the H-bonding analysis for model peptides like glycyl-glycine (gly-gly), glycine-ւ-valine (gly-val), glycyl-ւ-leucine (gly-leu) and triglycine (trigly) and triethylammonium based carboxylate protic ionic liquids (PILs) in aqueous solutions as well as for peptides in ∼0.2 mol·L-1 of aqueous PIL solutions in the spectral range of 7800-5500 cm-1 using Fourier transform near-infrared (FT-NIR) spectroscopy at 298.15 K. The hydration numbers for peptides and PILs were obtained using NIR method of simultaneous estimation of hydration spectrum and hydration number of a solute dissolved in water. The H-bond of water molecules around peptides and PILs are found to be stronger and shorter than those in pure liquid water. We observe that the hydration shell around zwitterions is a clathrate-like cluster of water in which ions entrap. Watery network analysis confirms that singly H-bonded species or NHBs changes to partial or distorted ice-like structures of water in the hydration shell of PILs. The overall water H-bonding in the hydration sphere of PILs increases in the order TEAF < TEAA < TEAG < TEAPy ≈ TEAP < TEAB. The influence of PILs on hydration behavior of peptides is explored in terms of H-bonding, cooperativity, hydrophobicity, water structural changes, ionic interactions etc.
Collapse
Affiliation(s)
- Kunal R Patil
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Seema S Barge
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | | | - Dilip H Dagade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| |
Collapse
|
4
|
Chromá R, Vilková M, Shepa I, Makoś-Chełstowska P, Andruch V. Investigation of tetrabutylammonium bromide-glycerol-based deep eutectic solvents and their mixtures with water by spectroscopic techniques. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Influences of composition and temperature on the behaviors of a binary mixture containing methanol and 1-ethylimidazole. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
The experimental physicochemical properties, 1H NMR, and COSMO-RS model calculations for the binary system containing water and 1-ethylimidazole. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Thermodynamic studies of aqueous solutions of ammonium based nitrate protic ionic liquids at different temperatures (288.15 K to 303.15 K) and 101.325 kPa: A volumetric approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Roldán-Ruiz M, Jiménez-Riobóo R, Gutiérrez M, Ferrer M, del Monte F. Brillouin and NMR spectroscopic studies of aqueous dilutions of malicine: Determining the dilution range for transition from a “water-in-DES” system to a “DES-in-water” one. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Posada E, Roldán-Ruiz M, Jiménez Riobóo R, Gutiérrez M, Ferrer M, del Monte F. Nanophase separation in aqueous dilutions of a ternary DES as revealed by Brillouin and NMR spectroscopy. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Physicochemical properties, 1H NMR, ab initio calculations and molecular interactions in a binary mixture of N-methylimidazole with ethyl acetate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
He Z, Ma Y, Alexandridis P. Comparison of ionic liquid and salt effects on the thermodynamics of amphiphile micellization in water. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Hou H, Jiao B, Li Q, Lin X, Liu S. Physicochemical Properties, 1H-NMR, Ab Initio Calculations and Molecular Interaction in Binary Mixtures of N-methylimidazole with Methanol. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0824-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Hou H, Jiao B, Li Q, Lin X, Liu M, Shi H, Wang L, Liu S. Physicochemical properties, NMR, Ab initio calculations and the molecular interactions in a binary mixture of N-methylimidazole and water. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Zhu X, Zhang H, Xu Y. Does the ethanolammonium acetate ionic liquid mix homogeneously with molecular solvents? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:205-212. [PMID: 26477974 DOI: 10.1002/mrc.4363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/15/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
In order to study micro-structural heterogeneities in the solutions of ionic liquids (ILs), ethanolammonium acetate (EOAA) IL has been synthesized and (1) H NMR spectra of its binary solutions, namely EOAA/DMSO and EOAA/n-butanol, have been measured at 298.15 K. Then the concentration-dependent chemical shifts δ (-CH3 , EOAA), δ (-CH3 , DMSO) and δ (-CH3 , n-butanol) have been correlated separately using the local composition (LC) model. The results indicated that self-association of EOAA played the leading role within EOAA-rich region in mixtures. However with the molecular solvents increasing, the interactions between EOAA and solvents gradually predominated. Moreover the comparisons between DMSO and n-butanol have demonstrated that DMSO could break the network of IL more easily, indicating that the influence of DMSO on the properties of EOAA should be more obvious, which was consistent with experimental results of viscosity and conductivity. Furthermore the maximum difference between the local and the bulk appeared at x(EOAA) ≈ 0.5 for both systems, which reflected remarkable nonideality of mixtures at this concentration. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiao Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Huan Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yingjie Xu
- Department of Chemistry, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
15
|
Xu Y, Li T, Peng C, Liu H. Influence of C2–H of Imidazolium-Based Ionic Liquids on the Interaction and Vapor–Liquid Equilibrium of Ethyl Acetate + Ethanol System: [Bmim]BF4 vs [Bmmim]BF4. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingjie Xu
- Department
of Chemistry, Shaoxing University, Shaoxing 312000, China
- State
Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Tingting Li
- State
Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Changjun Peng
- State
Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State
Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|