Zdziennicka A, Jańczuk B. Adsorption and wetting properties of biosurfactants, Trtions and their mixtures in aqueous and water-ethanol environment.
Adv Colloid Interface Sci 2024;
337:103379. [PMID:
39700969 DOI:
10.1016/j.cis.2024.103379]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Adsorption of rhamnolipid (RL) and surfactin (SF) as well as their mixtures with Triton X-100 (TX100) and Triton X-165 (TX165) at the solution-air (S-A), PTFE (polytetrafluoroethylene)-S, PMMA (poly (methyl methacrylate))-S, Q (quartz)-S, PMMA-A, and Q-A as well as their wetting properties regarding the surface tension of the PTFE, PMMA and quartz and its components and parameters were discussed using the literature data. The mutual influence of biosurfactants and Tritons on the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces tensions was considered in terms of their adsorption at these interfaces for both aqueous and water-ethanol solutions of the biosurfactant mixtures with Tritons. For this purpose there were used different methods on the basis of which the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interface tensions can be predicted and/or described in the function of concentration and composition of the mixtures. Changes of these interface tensions as a function of concentration and composition of the mixtures were compared to those affected by individual mixture components. In turn, these changes of the interface tension were considered as regards properties of the biosurfactants, Tritons and ethanol layers adsorbed at the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces. Based on the changes of the contact angle of the aqueous and water-ethanol solutions of the biosurfactants and Tritons as well as biosurfactants mixtures with Tritons on PMMA and quartz as a function of mixture concentration and composition, the changes of the PMMA and quartz surface tension were analyzed using various approaches to the surface and interface tension. The thermodynamic functions change as a results of RL, SF, TX100, TX165, ET as well as the mixtures of RL and SF with Tritons adsorption at different interfaces were also analyzed based on the literature data. These considerations allow to describe and/or predict changes of the interface tension, contact angle of the mixtures as a function of their composition based on these properties of individual mixture components.
Collapse