Bani-Yaseen AD, Al-Zoubi RM, Shkoor M. Spectrofluorometric investigations on the solvent effects on the photocyclization reaction of diclofenac.
Heliyon 2023;
9:e20767. [PMID:
37920513 PMCID:
PMC10618426 DOI:
10.1016/j.heliyon.2023.e20767]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
The solvent effects on the photochemical conversion rate of the photosensitizing drug diclofenac (DCF) were investigated using steady-state fluorescence spectroscopy. The spectral information obtained for the photochemical reaction of DCF in a set of neat solvents demonstrates that the photoconversion reaction rate of DCF is not only medium polarity dependent but also hydrogen-bonding dependent. The solvent effects were qualitatively and quantitatively assessed employing various solvatochromic models, including multi-parameter linear regression analysis (MLRA). Interestingly, the MLRA results (R = 0.99) revealed that the photoconversion rate increases with increasing solvent polarizability (π*) and H-bond donor capability (α), whereas the rate decreases with increasing hydrogen-bond acceptor capability (β). However, predominant effect of the solvent acidity compared to basicity and polarizability was observed. A hypothesis rationalizing the effects of H-bonding and medium polarity on DCF photoconversion reaction is presented and discussed.
Collapse