1
|
Jiang Z, Li J, Huang G, Yan L, Ma J. Efficient removal of ethidium bromide from aqueous solutions using chromatin-loaded chitosan polyvinyl alcohol composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3276-3295. [PMID: 38085489 DOI: 10.1007/s11356-023-31364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
In this work, a novel chromatin-loaded chitosan polyvinyl alcohol composite was developed as a simple, efficient and environmentally friendly adsorbent for the efficient removal of ethidium bromide (EtBr). SEM images showed that the composites were characterized by dense porous and uniformly distributed morphology. The BET analysis showed the presence of mesopores and macropores in the composites. FTIR and XRD results showed that the chromatin was uniformly dispersed in the chitosan-polyvinyl alcohol carrier through hydrogen bonding. The fluorescence microscopy images showed the change of fluorescence effect before and after the adsorption of the material, which indicated that the chromatin was uniformly distributed in the composites and had a good adsorption effect. The optimal experimental conditions were T = 30℃, t = 120 min, pH = 7.4, m = 0.2 g when the composite with only 5% chromatin content had the ability to adsorb EtBr efficiently (minimum concentration 2 mg·L-1: adsorption rate 99%; maximum concentration 20 mg·L-1: adsorption rate 90%).The adsorption kinetics and thermodynamics showed that the EtBr adsorption kinetics of the composite conformed to the pseudo-second-order kinetic model (0.995 < R2 < 0.999) and the Freundlich isothermal model, and was a spontaneous process (ΔH < 0). This study on the immobilization of chromatin will provide a new way and reference for the application of chromatin in the treatment of EtBr pollutants.
Collapse
Affiliation(s)
- Zhikang Jiang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Junsheng Li
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China.
| | - Guoxia Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Liujuan Yan
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Ji Ma
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| |
Collapse
|
2
|
Weeraphan C, Thawornpan P, Thanapongpichat S, Srinoun K, Win Tun A, Srisomsap C, Svasti J, Buncherd H. Application of the Magnetic Fraction of Fly Ash as a Low-Cost Heterogeneous Fenton Catalyst for Degrading Ethidium Bromide. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1977313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Nakhon Pathom, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Hansuk Buncherd
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
- Medical Science Research and Innovation Institute, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
3
|
Chang PH, Sarkar B. Mechanistic insights into ethidium bromide removal by palygorskite from contaminated water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111586. [PMID: 33171377 DOI: 10.1016/j.jenvman.2020.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/29/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Ethidium bromide (EtBr)-containing wastewater can be hazardous to biodiversity when released into the soil and water bodies without treatment. EtBr can mutate living microbial cells and pose toxicity to even higher organisms. This work investigated the removal of EtBr from aqueous solutions by a naturally occurring palygorskite (PFl-1) clay mineral via systematic batch adsorption experiments under different physicochemical conditions. EtBr existed in an undissociated form at pH ~7, and was adsorbed on PFl-1 obeying the Freundlich isotherm model. The maximum EtBr adsorption capacity was 285 mmol/kg. The best fitted kinetic model for EtBr adsorption was the pseudo-second order model. The amounts of exchangeable cations desorbed from PFl-1 during EtBr adsorption was linearly correlated to the amounts of EtBr adsorbed, with a slope of 0.97, implying that a cation exchange-based adsorption mechanism was dominating. Additionally, dimerization of EtBr molecules via bromide release assisted an increased EtBr removal by PFl-1 at high adsorbate concentrations. Detailed x-ray diffraction, Fourier transform infrared, scanning electron imaging and energy dispersive x-ray analyses confirmed that EtBr adsorption occurred dominantly on the surface of palygorskite which mineralogically constituted 80% of the bulk PFl-1 adsorbent. A small portion of EtBr was also adsorbed by PFl-1 through intercalation onto the smectite impurity (10%) in PFl-1. This study suggested that PFl-1 could be an excellent natural material for removing EtBr from pharmaceutical and laboratory wastewater.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
4
|
Xie E, Zheng L, Ding A, Zhang D. Mechanisms and pathways of ethidium bromide Fenton-like degradation by reusable magnetic nanocatalysts. CHEMOSPHERE 2021; 262:127852. [PMID: 32768757 DOI: 10.1016/j.chemosphere.2020.127852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Ethidium bromide (3,8-diamino-6-phenyl-5-ethylphenanthridinium bromide, EtBr) is a carcinogenic compound widely used for staining nucleic acids that is difficult to treat. In this study, magnetic nanocatalysts (MNCs) were synthesized for the heterogeneous Fenton-like degradation of EtBr. The initial pH, MNC content, and H2O2 concentration were the key factors affecting the EtBr degradation performance and dynamics. An EtBr removal efficiency of 98.97% was achieved within 4 h under optimal conditions (initial pH, 3.0; MNC content, 1 g/L; H2O2 concentration, 50 mM), and the degradation followed the ring-open pathway with (2E,4Z,8E)-3-amino-N-ethyl-7,9-dihydroxynona-2,4,8-trienamide as an intermediate, as determined by liquid chromatography and mass spectrometry (LC/MS). Unexpected and satisfactory Fenton-like oxidation of EtBr occurred under basic conditions, which was explained by a novel denitration pathway with 2-[nitro(phenyl)methyl]-(1,1'-biphenyl)-4,4'-diamine as an intermediate. The MNCs retained 62.17% of their degradation efficiency after five consecutive reaction and harvest cycles. Our work elucidated the mechanisms and pathways of EtBr removal in a Fenton-like reaction using MNCs, and comprehensively discussed the optimal reaction conditions and its potential for re-use.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
5
|
|
6
|
Li Z, Chang PH, Jiang WT, Liu Y. Enhanced removal of ethidium bromide (EtBr) from aqueous solution using rectorite. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121254. [PMID: 31586911 DOI: 10.1016/j.jhazmat.2019.121254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 05/07/2023]
Abstract
Ethidium bromide (EtBr) is an intercalating agent commonly used as nucleic acid fluorescent tag in various techniques of life science field. It is considered as a serious biohazard due to its mutagenicity and carcinogenicity. As such, developing high efficiency and low cost materials as cleanup kits is in urgent need although many methods have already been developed. In this study we take use of the affinity of organic cations for clay minerals of high cation exchange capacity (CEC) and large specific surface area (SSA) and tested the removal of EtBr using rectorite, a type of clay mineral made of 1:1 regularly mixed layers of illite and montmorillonite. Our results showed that the uptake of Et+ on rectorite could be as high as 400 mmol/kg and the removal of Et+ was extremely fast. Desorption of inorganic cation Ca2+ and sorption of counterion Br- revealed that cation exchange was the dominating mechanism of Et+ removal using rectorite. Thermal analyses revealed that the EtBr could be thermally destructed inside the interlayer of rectorite and the material could be thermally regenerated. Thus, clay minerals could have a great potential to be fabricated into cleanup kits for the removal of EtBr in case of spill.
Collapse
Affiliation(s)
- Zhaohui Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, 29 Xueyuan Road, Beijing, 100083, China; Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan; Department of Geosciences, University of Wisconsin - Parkside, 900 Wood Road, Kenosha, WI 53144, USA.
| | - Po-Hsiang Chang
- Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Wei-Teh Jiang
- Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan.
| | - Yujuan Liu
- Department of Chemistry, University of Wisconsin - Parkside, 900 Wood Road, Kenosha, WI 53144, USA
| |
Collapse
|
7
|
Ge Z, Sun T, Xing J, Fan X. Efficient removal of ethidium bromide from aqueous solution by using DNA-loaded Fe 3O 4 nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2387-2396. [PMID: 30467750 DOI: 10.1007/s11356-018-3747-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Ethidium bromide (EtBr) is widely used as DNA-staining dyes for the detection of nucleic acids in laboratories and known to be powerful mutagens and carcinogens. In the present paper, the removal of EtBr from aqueous solutions in a batch system using DNA-loaded Fe3O4 nanoparticles as a simple and efficient method was investigated. DNA was covalently loaded on the surface of Fe3O4 magnetic nanoparticles, which was confirmed by FT-IR analysis and zeta potential measurements. The morphology and crystal structure were characterized by SEM, TEM, and XRD. The influence factors on the removal efficiency such as initial EtBr concentration, contact time, adsorbent dose, pH, and temperature were also studied. The removal process of EtBr can be completed quickly within 1 min. The removal efficiency was more than 99% while the EtBr concentration was routinely used (0.5 mg L-1) in biology laboratories and the dosages of nanoparticles were 1 g L-1. For the different EtBr concentrations from 0.5 to 10 mg L-1 in aqueous solution, the goal of optimized removal was achieved by adjusting the dosage of DNA-loaded Fe3O4 nanoparticles. The optimum pH was around 7 and the operational temperature from 4 to 35 °C was appropriate. Kinetic studies confirmed that the adsorption followed second-order reaction kinetics. Thermodynamic data revealed that the process was spontaneous and exothermic. The adsorption of EtBr on DNA-loaded Fe3O4 nanoparticles fitted well with the Freundlich isotherm model. These results indicated that DNA-loaded Fe3O4 nanoparticles are a promising adsorbent for highly efficient removal of EtBr from aqueous solution in practice.
Collapse
Affiliation(s)
- Zhiqiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Tingting Sun
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jinfeng Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xuejiao Fan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
8
|
Sulthana R, Taqui SN, Zameer F, Syed UT, Syed AA. Adsorption of ethidium bromide from aqueous solution onto nutraceutical industrial fennel seed spent: Kinetics and thermodynamics modeling studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1075-1086. [PMID: 30156921 DOI: 10.1080/15226514.2017.1365331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dye pollutants from research laboratories are one of the major sources for environmental contamination. In the present study, a nutraceutical industrial fennel seed spent (NIFSS) was explored as potential adsorbent for removal of ethidium bromide (EtBr) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Through batch experiments, the operating variables like initial dye concentration, adsorbent dosage, temperature, contact time, and pH were optimized. Equilibrium data were analyzed using three number of two-parameter and six number of three-parameter isotherm models. The adsorption kinetics was studied using pseudo-first order and pseudo-second order. The diffusion effects were studied by film diffusion, Webber-Morris, and Dumwald-Wagner diffusion models. The thermodynamic parameters; change in enthalpy (ΔHº), entropy (ΔSº), and Gibbs free energy (ΔGº) of adsorption system were also determined and evaluated.
Collapse
Affiliation(s)
- Razia Sulthana
- a Department of Studies in Chemistry , University of Mysore, Manasa Gangothri , Mysore , Karnataka , India
| | - Syed Noeman Taqui
- b Department of Chemistry , University of Malaya , Kuala Lumpur , Malaysia
| | - Farhan Zameer
- c Mahajana Life Science Research Laboratory, Department of Biotechnology , Microbiology and Biochemistry, Mahajana Research Foundation, Pooja Bhagavat Memorial Mahajana Post Graduate Centre, University of Mysore , Metagalli, Mysore , Karnataka , India
| | - Usman Taqui Syed
- d LAQV-REQUIMTE, Department of Chemistry , Faculty of Science and Technology, Universidade NOVA de Lisboa , Caparica , Portugal
| | - Akheel Ahmed Syed
- a Department of Studies in Chemistry , University of Mysore, Manasa Gangothri , Mysore , Karnataka , India
| |
Collapse
|
9
|
Anastopoulos I, Bhatnagar A, Bikiaris DN, Kyzas GZ. Chitin Adsorbents for Toxic Metals: A Review. Int J Mol Sci 2017; 18:ijms18010114. [PMID: 28067848 PMCID: PMC5297748 DOI: 10.3390/ijms18010114] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/27/2023] Open
Abstract
Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.
Collapse
Affiliation(s)
- Ioannis Anastopoulos
- Laboratory of Soils and Agricultural Chemistry, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, GR-118 55 Athens, Greece.
- Department of Agrobiotechnology, Agricultural Research Institute, P.O. Box 22016, 1516 Nicosia, Cyprus.
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Dimitrios N Bikiaris
- Division of Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - George Z Kyzas
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, GR-65404 Kavala, Greece.
| |
Collapse
|
10
|
Equilibrium and Kinetic Studies of Trihalomethanes Adsorption onto Multi-walled Carbon Nanotubes. WATER AIR AND SOIL POLLUTION 2016. [DOI: 10.1007/s11270-016-3029-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
|