1
|
Tim B, Konował E, Modrzejewska-Sikorska A. Starch Sodium Octenylsuccinate as a New Type of Stabilizer in the Synthesis of Catalytically Active Gold Nanostructures. Int J Mol Sci 2024; 25:5116. [PMID: 38791154 PMCID: PMC11120886 DOI: 10.3390/ijms25105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Here, starch derivatives, i.e., sodium starch octenylsuccinate (OSA starch, hereinafter referred to as OSA), were employed as both reducing and stabilizing agents for the unique, inexpensive, and simple synthesis of gold nanoparticles (OSA-AuNPs) in an aqueous solution with gold salt. The obtained OSA-AuNPs were characterized by UV-vis spectrophotometry, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic activity of the obtained gold colloids was studied in the reduction of organic dyes, including methylene blue (C.I. Basic Blue 9) and rhodamine B (C.I. Basic Violet 10), and food coloring, including tartrazine (E102) and azorubine (E122), by sodium borohydride. Moreover, OSA-AuNPs were utilized as signal amplifiers in surface-enhanced Raman spectroscopy. The obtained results confirmed that gold nanoparticles can be used as effective catalysts in reduction reactions of selected organic dyes, as well as signal enhancers in the SERS technique.
Collapse
Affiliation(s)
- Beata Tim
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| | - Emilia Konował
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | | |
Collapse
|
2
|
Liu X, Guo Q, Ren S, Guo J, Wei C, Chang J, Shen B. Synthesis of starch‐based flocculant by multi‐component grafting copolymerization and its application in oily wastewater treatment. J Appl Polym Sci 2022. [DOI: 10.1002/app.53356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiwen Liu
- College of Science China University of Petroleum Beijing China
| | - Qiaoxia Guo
- College of Science China University of Petroleum Beijing China
| | - Shenyong Ren
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing China
| | - Junkang Guo
- College of Science China University of Petroleum Beijing China
| | - Chongbin Wei
- College of Science China University of Petroleum Beijing China
| | - Jiaxin Chang
- College of Science China University of Petroleum Beijing China
| | - Baojian Shen
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing China
| |
Collapse
|
3
|
Inhibition of Staphylococcus aureus α-Hemolysin Production Using Nanocurcumin Capped Au@ZnO Nanocomposite. Bioinorg Chem Appl 2022; 2022:2663812. [PMID: 35669460 PMCID: PMC9167132 DOI: 10.1155/2022/2663812] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 05/16/2022] [Indexed: 12/27/2022] Open
Abstract
Nanoparticles of gold with zinc oxide (Au@ZnO NPs) were prepared by laser ablation and then capped with curcumin nanoparticles (Cur-Au@ZnO NPs). The synthesized NPs were characterized using different techniques, including transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-visible spectroscopy, and X-ray diffraction. In addition, the ability of NPs as a promising antibacterial agent was tested against Staphylococcus aureus through the agar well diffusion method and AO/EtBr staining assay. The results showed that the prepared nanoparticles (Cur-Au@ZnO) served as an antibacterial agent and can destroy the bacterial cells by losing the cell wall integrity and penetrating the cytoplasmic membrane. Moreover, the findings confirmed the role of the formed NPs in attenuation of the adherence and invasion of S. aureus to rat embryonic fibroblast (REF) cells. Furthermore, the activity of Cur-Au@ZnO NPs against the S. aureus α-hemolysin toxin was evaluated using the western blot technique, using human alveolar epithelial cells (A549), and through histopathology examination in a mouse model. In conclusion, the built Cur-Au@ZnO NPs can be used as a potential antibacterial agent and an inhibitor of α-hemolysin toxin secreted by S. aureus. These NPs may offer a new strategy in combating pathogen infections and in the future for biomedical and pharmaceutical applications.
Collapse
|
4
|
Sarder R, Piner E, Rios DC, Chacon L, Artner MA, Barrios N, Argyropoulos D. Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydr Polym 2022; 278:118973. [PMID: 34973787 DOI: 10.1016/j.carbpol.2021.118973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The outstanding versatility of starch offers a source of inspiration for the development of high-performance-value-added biomaterials for the biomedical field, including drug delivery, tissue engineering and diagnostic imaging. This is because starch-based materials can be tailored to specific applications via facile grafting or other chemistries, introducing specific substituents, with starch being effectively the "template" used in all the chemical transformations discussed in this review. A considerable effort has been carried out to obtain specific tailored starch-based grafted polymers, taking advantage of its biocompatibility and biodegradability with appealing sustainability considerations. The aim of this review is to critically explore the latest research that use grafting chemistries on starch for the synthesis of products for biomedical applications. An effort is made in reviewing the literature that proposes synthetic "greener" approaches, the use of enzymes and their immobilized analogues and alternative solvent systems, including water emulsions, ionic liquids and supercritical CO2.
Collapse
Affiliation(s)
- Roman Sarder
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Emily Piner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - David Cruz Rios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Lisandra Chacon
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Mirela Angelita Artner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | | |
Collapse
|
5
|
Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts 2021. [DOI: 10.3390/catal11060714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged in recent decades as attractive and selective catalysts for sustainable organic synthesis. Nanostructured gold is indeed environmentally friendly and benign for human health; at the same time, it is active, under different morphologies, in a large variety of oxidation and reduction reactions of interest for the chemical industry. To stabilize the AuNPs and optimize the chemical environment of the catalytic sites, a wide library of natural and synthetic polymers has been proposed. This review describes the main routes for the preparation of AuNPs supported/embedded in synthetic organic polymers and compares the performances of these catalysts with those of the most popular AuNPs supported onto inorganic materials applied in hydrogenation and oxidation reactions. Some examples of cascade coupling reactions are also discussed where the polymer-supported AuNPs allow for the attainment of remarkable activity and selectivity.
Collapse
|
6
|
Wang H, Hu H, Yang H, Li Z. Hydroxyethyl starch based smart nanomedicine. RSC Adv 2021; 11:3226-3240. [PMID: 35424303 PMCID: PMC8694170 DOI: 10.1039/d0ra09663f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022] Open
Abstract
In the past decades, the vigorous development of nanomedicine has opened up a new world for drug delivery. Hydroxyethyl starch (HES), a clinical plasma volume expander which has been widely used for years, is playing an attracting role as drug carriers. Compared with all other polysaccharides, HES has proven its unique characteristics for drug delivery platforms, including good manufacture practice, biodegradability, biocompatibility, abundant groups for chemical modification, excellent water solubility, and tailorability. In this review, an overview of various types of HES based drug delivery systems is provided, including HES-drug conjugates, HES-based nano-assemblies, HES-based nanocapsules, and HES-based hydrogels. In addition, the current challenges and future opportunities for design and application of HES based drug delivery systems are also discussed. The available studies show that HES based drug delivery systems has significant potential for clinical translation.
Collapse
Affiliation(s)
- Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hang Hu
- National and Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmaceutical Engineering and Life Sciences, Changzhou University Changzhou 213164 People's Republic of China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
7
|
Saren RK, Banerjee S, Mondal B, Senapati S, Tripathy T. Studies of simultaneous electrochemical sensing of Hg 2+ and Cd 2+ ions and catalytic reduction properties of 4-nitrophenol by CuO, Au, and CuO@Au composite nanoparticles synthesised using a graft copolymer as a bio-template. NEW J CHEM 2021. [DOI: 10.1039/d1nj04702g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Simultaneous electrochemical detection of Hg2+ and Cd2+ ions and catalytic reduction of 4NP to 4AP using a novel synthesized graft copolymer/CuO@Au NPs composite.
Collapse
Affiliation(s)
- Rakesh Kumar Saren
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Paschim Medinipur, Midnapore 721101, West Bengal, India
| | - Shankha Banerjee
- Department of Biotechnology, BJM School of Bioscience, Indian Institute of Technology Madras, Chennai 600036, India
| | - Barun Mondal
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Paschim Medinipur, Midnapore 721101, West Bengal, India
| | - Sanjib Senapati
- Department of Biotechnology, BJM School of Bioscience, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Paschim Medinipur, Midnapore 721101, West Bengal, India
| |
Collapse
|
8
|
Nanoengineering of Gold Nanoparticles: Green Synthesis, Characterization, and Applications. CRYSTALS 2019. [DOI: 10.3390/cryst9120612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fundamental aspects of the manufacturing of gold nanoparticles (AuNPs) are discussed in this review. In particular, attention is devoted to the development of a simple and versatile method for the preparation of these nanoparticles. Eco-friendly synthetic routes, such as wet chemistry and biosynthesis with the aid of polymers, are of particular interest. Polymers can act as reducing and/or capping agents, or as soft templates leading to hybrid nanomaterials. This methodology allows control of the synthesis and stability of nanomaterials with novel properties. Thus, this review focus on a fundamental study of AuNPs properties and different techniques to characterize them, e.g., Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), UV-Visible spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy, Small-angle X-Ray Scattering (SAXS), and rheology. Recently, AuNPs obtained by “green” synthesis have been applied in catalysis, in medicine, and as antibacterials, sensors, among others.
Collapse
|
9
|
Mondal B, Bhanja SK, Tripathy T. Simultaneous Electrochemical Sensing of
p
‐Aminophenol and Hydroquinone by Using Grafted
Tricholoma
Mushroom Polysaccharide/Gold Composite Nanoparticles in Aqueous Media. ChemistrySelect 2019. [DOI: 10.1002/slct.201901772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Barun Mondal
- Postgraduate Division of ChemistryMidnapore College (Autonomous), Midnapore, Paschim Medinipur 721101, West Bengal India
| | - Sunil K. Bhanja
- Department of chemistryGovernment General Degree College, Kharagpur-II, Paschim Medinipur 721149, West Bengal India
| | - Tridib Tripathy
- Postgraduate Division of ChemistryMidnapore College (Autonomous), Midnapore, Paschim Medinipur 721101, West Bengal India
| |
Collapse
|
10
|
Borah D, Hazarika M, Tailor P, Silva AR, Chetia B, Singaravelu G, Das P. Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0793-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
We describe an in situ method of synthesizing highly branched gold nanoflower (AuNFs) using aqueous seed extract of Syzygium cumini (L.) Skeels as reductant in the presence of 0.3% starch. Surprisingly, when the same reaction was carried out in the absence of starch or with starch at a lower concentration (0.15%), instead of flower-like morphology quasi-spherical or polyhedral nanoparticles (AuNPs) are obtained. The nanomaterials were extensively characterized by HRTEM, FESEM, UV–Vis, FTIR, XRD, XPS and TGA analysis. The biological activities of the materials were investigated for antimicrobial activities against four bacterial strains that include one Gram positive (Staphylococcus aureus MTCC 121), two Gram negative (Escherichia coli MTCC 40 and Pseudomonas aeruginosa MTCC 4673) and one fungi (Candida albicans MTCC 227). The nanoparticles functioned as effective antimicrobial and anti-biofilm agents against all the strains under study. Controlled study revealed that, the AuNFs showed improved efficacy over conventional polyhedral AuNPs against all the microbes under study which might be attributed to the larger surface-to-volume ratio of the nanoflowers. The AuNFs also showed effective in vitro anticancer activity against a human liver cancer cell line (HepG2) with no significant cytotoxicity. Our data suggest that the AuNFs can significantly reduce the cancer cell growth with IC50 value of 20 µg mL−1.
Collapse
|
11
|
Tran CD, Prosenc F, Franko M. Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin. J Colloid Interface Sci 2018; 510:237-245. [DOI: 10.1016/j.jcis.2017.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
|
12
|
Biopolymer zein-coated gold nanoparticles: Synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:404-411. [DOI: 10.1016/j.jphotobiol.2017.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
|
13
|
Tripathy T, Kolya H, Jana S, Senapati M. Green synthesis of Ag-Au bimetallic nanocomposites using a biodegradable synthetic graft copolymer; hydroxyethyl starch-g-poly (acrylamide-co-acrylic acid) and evaluation of their catalytic activities. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Umar A, Sanagi MM, Salisu A, Wan Ibrahim WA, Abd Karim KJ, Abdul Keyon AS. Preparation and characterization of starch grafted with methacrylamide using ammonium persulphate initiator. MATERIALS LETTERS 2016; 185:173-176. [DOI: 10.1016/j.matlet.2016.08.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Bibi S, Price GJ, Yasin T, Nawaz M. Eco-friendly synthesis and catalytic application of chitosan/gold/carbon nanotube nanocomposite films. RSC Adv 2016. [DOI: 10.1039/c6ra11618c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Novel eco-friendly chitosan nanocomposite membranes containing gold nanoparticles and carbon nanotubes (CNTs) have been synthesized to produce reusable catalytic membranes.
Collapse
Affiliation(s)
- Saira Bibi
- Department of Chemistry
- Hazara University
- Mansehra
- Pakistan
- Pakistan Institute of Engineering and Applied Sciences
| | | | - Tariq Yasin
- Pakistan Institute of Engineering and Applied Sciences
- Islamabad
- Pakistan
| | - Mohsan Nawaz
- Department of Chemistry
- Hazara University
- Mansehra
- Pakistan
| |
Collapse
|