1
|
Huang X, Wang H, Kong L, Chen Z, Zhang J, Zuo Y, Chen W. Microwave-assisted hydrothermal synthesis of highly dispersed cerium-zirconium solid solution on Ti 3C 2T x nanosheets as an efficient decontamination towards sulfur mustard simulants. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136203. [PMID: 39471616 DOI: 10.1016/j.jhazmat.2024.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
The microwave-assisted hydrothermal method has facilitated the straightforward and efficient production of nanoscale CexZr1-xO2/Ti3C2Tx composites. This technique has greatly shortened the synthesis time several hours required by conventional hydrothermal method to merely 10 min. Due to the unique mechanism of microwave-hydrothermal synthesis, composites with excellent crystallinity, uniform particle size, and superior degradation capabilities can be obtained without calcination. Our investigation systematically explores the influence of various factors including mineralizer concentration, dispersant types, synthesis duration, cerium-to-zirconium ratio, as well as MXene content on the material properties. Optimal degradation of 2-chloroethyl ethyl sulfide (2-CEES), sulfur mustard simulants, is achieved using PEG1000 as the dispersant, a cerium-to-zirconium ratio of 1:2, along with 15 mL of MXene, resulting in a remarkably short half-life of only 6.5 min. Furthermore, it is confirmed that the incorporation of cerium atoms into ZrO2 lattice, forming a solid solution that is deposited onto the interlayer and surface of Ti3C2Tx nanosheets, with the composite particles measuring approximately 5.01 nm. The reduced size and increased specific surface area, coupled with the synergistic effects of oxygen vacancies and acid-base sites, ultimately contribute to the hydrolysis and elimination reactions occurring on 2-CEES. This research offers fresh perspectives on the development of novel materials for the degradation of chemical warfare agents.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Zihao Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
2
|
Huang X, Chen W, Wang H, Kong L, Zhang J, Zhao C, Zuo Y. Manganese Oxides with Different Morphologies In Situ Anchored onto Ti 3C 2T x Nanosheets: Highly Effective Decontamination toward Sulfur Mustard Simulants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30371-30384. [PMID: 38815133 DOI: 10.1021/acsami.4c03629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Manganese oxides with porous structure and abundant active sites show potential in degrading sulfur mustard (HD). However, there is an interface effect between the oily liquid HD and nano oxides, and the powder is prone to agglomeration, which leads to incomplete contact and limited degradation ability. Here, we demonstrate a simple hydrothermal method for preparing MnO2/Ti3C2 composites to address this problem. The influence of morphology and crystal structure on performance are examined. Herein, flower-like MnO2 is loaded onto the surface or interlayer of Ti3C2-MXene nanosheets during in situ formation, significantly expanding the specific surface area. It also provides abundant acid-base sites and oxygen vacancies for the degradation of simulants 2-chloro-ethyl-ethyl thioether (2-CEES) without external energy, resulting in a reaction half-life as fast as 12.5 min. The relationship between structure and performance is clearly elaborated through temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) analyses. Based on in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis, gas chromatography-mass spectrometry (GC-MS) analysis, and density functional theory (DFT) calculation, the proposed degradation pathway of the 2-CEES molecule is a synergistic effect of hydrolysis, elimination, and oxidation. Furthermore, the products are nontoxic or low toxic. Metal oxide/MXene composites are first illustrated for their potential use in degrading sulfur mustard, suggesting new insights into these materials as novel decontamination for decomposing chemical warfare agents.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Chonglin Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| |
Collapse
|
3
|
Lou M, Bayles A, Everitt HO, Halas NJ. Selective Photodetoxification of a Sulfur Mustard Simulant Using Plasmonic Aluminum Nanoparticles. NANO LETTERS 2022; 22:7699-7705. [PMID: 36073653 DOI: 10.1021/acs.nanolett.2c03188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic nanostructures have attracted increasing interest in the fields of photochemistry and photocatalysis for their ability to enhance reactivity and tune reaction selectivity, a benefit of their strong interactions with light and their multiple energy decay mechanisms. Here we introduce the use of earth-abundant plasmonic aluminum nanoparticles as a promising renewable detoxifier of the sulfur mustard simulant 2-chloroethylethylsulfide through gas phase photodecomposition. Analysis of the decomposition products indicates that C-S bond breaking is facilitated under illumination, while C-Cl breaking and HCl elimination are favored under thermocatalytic (dark) conditions. This difference in reaction pathways illuminates the potential of plasmonic nanoparticles to tailor reaction selectivity toward less hazardous products in the detoxification of chemical warfare agents. Moreover, the photocatalytic activity of the Al nanoparticles can be regenerated almost completely after the reaction concludes through a simple surface treatment.
Collapse
Affiliation(s)
- Minghe Lou
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Aaron Bayles
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Henry O Everitt
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
- U.S. Army DEVCOM Army Research Laboratory, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory of Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Verma M, Lee I, Oh J, Kumar V, Kim H. Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater. CHEMOSPHERE 2022; 287:132385. [PMID: 34597635 DOI: 10.1016/j.chemosphere.2021.132385] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 05/27/2023]
Abstract
Discharging of inorganic and organic pollutants creates a serious threat to the human health and the environment. In the current work, we have synthesized Ethylenediaminetetraacetic acid (EDTA) functionalized graphene oxide-chitosan nanocomposite (GO-EDTA-CS) for simultaneous removal of inorganic (i.e., mercury (Hg(II) and copper (Cu(II)) and organic pollutants (i.e., methylene blue (MB) and crystal violet (CV)) from wastewater via adsorption process. The structural, functional, morphological, elemental compositions, surface area and thermal properties of the synthesized nanocomposite were identified using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), Brunauer-Emmett-Teller (BET), and thermogravimetric analyzer (TGA), respectively. Different batch adsorption experiments such as pH effect, contact time, initial pollutants concentration, reusability etc. were studied in monocomponent system to optimize the results. The adsorption process apparently followed pseudo-second-order (PSO) kinetics for both pollutants, however the adsorption kinetics was also explained by the intra-particle diffusion model. The isotherm data for both metals ions and dyes were well fit by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbent were determined 324 ± 3.30 130 ± 2.80, 141 ± 6.60, and 121 ± 3.50 mg g-1 for Hg(II), Cu(II), MB, and CV, respectively. The excellent adsorption capacity was attributed to the availability of various active functional groups (e.g., -COOH, -OH, -NH2, etc.) on the adsorbent. The EDS, elemental mapping and FTIR analysis performed before and after the adsorption of heavy metals and dyes by GO-EDTA-CS confirmed the simultaneous adsorption of the pollutants. Moreover, GO-EDTA-CS could maintain its adsorption capacity for both inorganic and organic pollutants even after seven cycles of adsorption-desorption, indicating itself a promising adsorbent for practical wastewater treatment containing both inorganic and organic toxic pollutants.
Collapse
Affiliation(s)
- Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Ingyu Lee
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Joosung Oh
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
5
|
Verma M, Lee I, Hong Y, Kumar V, Kim H. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118447. [PMID: 34742823 DOI: 10.1016/j.envpol.2021.118447] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 05/27/2023]
Abstract
Heavy metals and organic dyes are the major source of water pollution. Herein, a trifunctional β-cyclodextrin-ethylenediaminetetraacetic acid-chitosan (β-CD-EDTA-CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β-CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg2+) and cadmium (Cd2+), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV) and safranin O (SO) were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows monolayer adsorption capacity 346.30 ± 14.0 and 202.90 ± 13.90 mg g-1 for Hg2+ and Cd2+, respectively, and a heterogeneous adsorption capacity 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g-1 for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161-0.00368 g mg-1 min-1) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the of four heavy metals Hg2+, Cd2+, Ni2+, and Cu2+ and three dyes MB, CV, and SO in secondary treated wastewater. Findings of this study indicate that β-CD-EDTA-CS simple and essay to synthesize and can be use in wastewater treatment.
Collapse
Affiliation(s)
- Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Ingyu Lee
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Youngmin Hong
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea; Technical Research Center, Shimadzu Scientific Korea, 145 Gasan Digital 1-ro, Geumcheon-gu, Seoul 08506, Republic of Korea
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
6
|
Mahayoni E, Min S, Kim J, Jeong K, Kim SH. Effective degradation of sulfur mustard simulant using novel sulfur-doped mesoporous zinc oxide under ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125144. [PMID: 33858104 DOI: 10.1016/j.jhazmat.2021.125144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Sulfur doped metal oxides were synthesized using a two-step precipitation method. When reacted against neat 2-CEES (2-chloroethyl-ethyl sulfide, a mustard gas simulant) under ambient conditions, sulfur doped mesoporous zinc oxide (MS-Zn) showed higher catalytic activity than the other metal oxides with 92.7% overall conversion in 24 h for a 2.5 μL neat 2-CEES droplet added on top of 2 × 2 cm large 400 mg catalyst layer. The reaction proceeded mainly by hydrolysis and further solvolysis reaction also occurred depending on the extracting solvents. Cyclic sulfonium ion intermediate reaction was thought to be involved in this reaction, and metal oxide surfaces were thought to facilitate the formation of sulfonium ions from adsorbed 2-CEES. All other by-products were also found to form via sulfonium ions, reconfirming the well-known importance of this intermediate species for the degradation reaction to proceed. The sulfur content for MS-Zn was varied and tested for degradation of neat 2-CEES. This modification showed that there is an optimal amount of sulfur content for the peak catalytic activity of MS-Zn for 2-CEES degradation. Adsorption energy of a 2-CEES molecule was calculated on model sulfur doped and non doped zinc oxide surfaces and the different adsorption energy levels were correlated with the catalytic activity of sulfur doped zinc oxide.
Collapse
Affiliation(s)
- Eunike Mahayoni
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Nano and Information Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Jongsik Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, Republic of Korea.
| | - Sang Hoon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Nano and Information Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Grangeon S, Bataillard P, Coussy S. The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation. ENVIRONMENTAL SOIL REMEDIATION AND REHABILITATION 2020. [DOI: 10.1007/978-3-030-40348-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Study of Decomposition of Chemical Warfare Agents using Solid Decontamination Substances. TOXICS 2019; 7:toxics7040063. [PMID: 31817905 PMCID: PMC6958360 DOI: 10.3390/toxics7040063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022]
Abstract
The decontamination of chemical warfare agents is important for the elimination or reduction of the effects of these substances on persons. Solid decontamination (degradation) sorbents that decompose dangerous substances belong among modern decontamination substances. The aim of the study was to design a procedure for monitoring the degradation of chemical warfare agents using such sorbents. The degradation of soman, VX [O-ethyl-S-(diisopropylaminoethyl)methylphosphonothioate] and sulphur mustard (chemical warfare agents) was monitored using FTIR spectrometry with the attenuated total reflection (ATR) technique. During the development and validation of this process, bonds were found in the substance molecule that decomposed and the positions of the absorbance bands corresponded to the vibration of these bonds. The evaluation of the degradation efficiency procedure for sorbents on chemical warfare agents was designed based on this study. We present the result of the measurements graphically as the time dependence of the distributed chemical warfare agent ratio, and the reaction times required to decompose 50% and 90% of the original amount of the substance.
Collapse
|
9
|
Nagpal M, Kakkar R. Use of metal oxides for the adsorptive removal of toxic organic pollutants. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Hou Y, An H, Chang S, Zhang J. Versatile catalysts constructed from hybrid polyoxomolybdates for simultaneously detoxifying sulfur mustard and organophosphate simulants. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00094a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Twelve new hybrid dimers based on carboxylic acid ligand modified polyoxomolybdates were prepared, which can rapidly oxidize the mustard gas simulant, CEES, and hydrolyze the nerve agent simulant, DECP, at room temperature.
Collapse
Affiliation(s)
- Yujiao Hou
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Haiyan An
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Shenzhen Chang
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Jie Zhang
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| |
Collapse
|
11
|
Chen HJ, Tian W, Ding W. Effect of preparation methods on morphology of active manganese dioxide and 2,4-dinitrophenol adsorption performance. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617417752578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein active manganese dioxide was prepared by different methods using KMnO4 and MnSO4·H2O as inorganic precursors. The impact of preparation methods on morphology and adsorption performance of the synthesized products was investigated. The experimental results show that the reaction temperature and pressure had a great effect on the morphology and adsorption performance of active manganese dioxide. The shape of active manganese dioxide prepared at room temperature and pressure was short rod-like while active manganese dioxide synthesized by hydrothermal method was mesoporous fibers and had better adsorption performance. The adsorption behavior of 2,4-dinitrophenol on mesoporous manganese dioxide was well described by Langmuir and Freundlich isotherm equation ( R2>0.99) and pseudo-second-order kinetic equation ( R2>0.99), so the adsorption process maybe a chemical and monolayer adsorption. The pH of solution had significant effect on the adsorption performance of 2,4-dinitrophenol on mesoporous manganese dioxide. The adsorption capacity was 2.539 mg/g in the condition of pH = 7.
Collapse
Affiliation(s)
- Hua-jun Chen
- Department of Environment and Chemistry, Luoyang Institute of Science and Technology, P.R. China
| | - Wenjie Tian
- Department of Environment and Chemistry, Luoyang Institute of Science and Technology, P.R. China
| | - Wuxiu Ding
- Department of Environment and Chemistry, Luoyang Institute of Science and Technology, P.R. China
| |
Collapse
|