1
|
Abdullayev Y, Karimova N, Schenberg LA, Ducati LC, Autschbach J. Computational predictions on Brønsted acidic ionic liquid-catalyzed carbon dioxide conversion to five-membered heterocyclic carbonyl derivatives. Phys Chem Chem Phys 2023; 25:8624-8630. [PMID: 36891907 DOI: 10.1039/d2cp05877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Experimentally conducted reactions between CO2 and various substrates (i.e., ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [Et2NH2]HSO4 as a catalyst aiming to investigate and propose 'greener' pathways for future experimental studies. Computations show that EDA is the best to fixate CO2 among the tested substrates: the nucleophilic EDA attack on CO2 is calculated to have a very small energy barrier to overcome (TS1EDA, ΔG‡ = 1.4 kcal mol-1) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) via ring closure and dehydration of the concerted transition state (TS2EDA, ΔG‡ = 32.8 kcal mol-1). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO2 with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL via changing the anion part (HSO4-) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO2 molecules via noncovalent interactions to ease nucleophilic attack on CO2.
Collapse
Affiliation(s)
- Yusif Abdullayev
- Department of Chemical Engineering, Baku Engineering University, Hasan Aliyev str. 120, Baku, Absheron, AZ0101, Azerbaijan.
- Institute of Petrochemical Processes, Azerbaijan National Academy of Sciences, Hojaly ave. 30, Baku, AZ1025, Azerbaijan
| | - Nazani Karimova
- Department of Chemical Engineering, Baku Engineering University, Hasan Aliyev str. 120, Baku, Absheron, AZ0101, Azerbaijan.
| | - Leonardo A Schenberg
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000, São Paulo, SP, Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000, São Paulo, SP, Brazil
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| |
Collapse
|
2
|
Hosseini SM, Soltanabadi A, Abdouss M, Mazinani S. Investigating the structure of the product of graphene oxide reaction with folic acid and chitosan: density functional theory calculations. J Biomol Struct Dyn 2022; 40:14146-14159. [PMID: 34791994 DOI: 10.1080/07391102.2021.2001372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chitosan biopolymer was used to modify the level of graphene oxide. And the composite prepared from graphene oxide/chitosan, due to its favorable physical and chemical properties, have been used as a drug delivery system. In this study, the adsorption of Folic acid on the carrier was investigated using density functional theory (DFT). The geometry optimizations, electronic structures, and gas-phase properties of widely applicable graphene (G), graphene oxide (GO), chitosan (CS), folic acid (FA), GO-CS and GO-CS-FA were investigated using DFT. The studied molecules are based on graphene oxide. In GO-CS, DFT calculation show that two Chitosan connected to the GO molecule on both opposite sides, so that two Chitosan have maximum distance from each other. Finally, the electronic structure of FA was obtained with this molecule calculated and discussed. The interaction of hydrogen bonds in the most stable pair formers between molecules were determined. Furthermore, the hydrogen bonds were studied by atom in molecules natural bond orbital analyses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Azim Soltanabadi
- Department of Physical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Schiff base (Z)-4-((furan-2-ylmethylene)amino) benzenesulfonamide: Synthesis, solvent interactions through hydrogen bond, structural and spectral properties, quantum chemical modeling and biological studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Torkzadeh M, Moosavi M. DFT and COSMO-RS studies on dicationic ionic liquids (DILs) as potential candidates for CO 2 capture: the effects of alkyl side chain length and symmetry in cations. RSC Adv 2022; 12:35418-35435. [DOI: 10.1039/d2ra05805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
The weaker interaction energy between anions and cations, the stronger interaction of a CO2 molecule with the cation. Also, the selectivity of CO2 from H2, CO and CH4 gases decreases slightly with increasing the length of side alkyl chains.
Collapse
Affiliation(s)
- Mehrangiz Torkzadeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Majid Moosavi
- Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
5
|
Surendar P, Pooventhiran T, Rajam S, Irfan A, Thomas R. Schiff Bases from α-ionone with Adenine, Cytosine, and l-leucine Biomolecules: Synthesis, Structural Features, Electronic Structure, and Medicinal Activities. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416522500016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tea is a very important source of the terepenoid [Formula: see text]-ionone, which is much appreciated as a medicinal beverage. Schiff bases are a very important class of organic compounds usually formed by the condensation of carbonyl compounds with amines. [Formula: see text]-ionone is a carbonyl terpenoid obtained from Schiff bases on condensation with nucleobases like adenine and cytosine and the amino acid [Formula: see text]-leucine. We synthesized these three Schiff bases and characterized them using UV, FTIR, and H1 and C13-NMR spectra. The molecules were optimized using B3LYP/6-311+G(2d,p) level followed by the simulation of FT-IR spectra, of which the simulated and experimental spectra showed complete agreement. The UV spectra were simulated using TD-DFT, and the electronic excitations were carefully analyzed. Natural bond orbitals provided an analysis of the stability of the compound, which is supplemented by the data from frontier molecular orbital analysis. Detailed wavefunction analysis is reported which predicts the active centers, reactivity profile, and the extent of non-covalent interactions. PASS indicated that compounds show antieczemic properties and antiarthritic properties, which is confirmed with the help of molecular docking results.
Collapse
Affiliation(s)
- P. Surendar
- Department of Chemistry, Bishop Heber’s College (Autonomous), Tiruchirappalli 600017, Tamil Nadu, India
- UPASI Tea Research Institute Nirardam (BPO), Valparai 642127, Tamil Nadu, India
| | - T. Pooventhiran
- Department of Chemistry, St. Berchmans College (Autonomous), Mahatma Gandhi University, Changanaserry 686101, Kerala, India
| | - Shameela Rajam
- Department of Chemistry, Bishop Heber’s College (Autonomous), Tiruchirappalli 600017, Tamil Nadu, India
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Mahatma Gandhi University, Changanaserry 686101, Kerala, India
| |
Collapse
|
6
|
|
7
|
Mary YS, Mary YS, Armaković S, Armaković SJ, Yadav R, Celik I, Mane P, Chakraborty B. Stability and reactivity study of bio-molecules brucine and colchicine towards electrophile and nucleophile attacks: Insight from DFT and MD simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116192] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Surendar P, Pooventhiran T, Rajam S, Bhattacharyya U, Bakht MA, Thomas R. Quasi liquid Schiff bases from trans-2-hexenal and cytosine and l-leucine with potential antieczematic and antiarthritic activities: Synthesis, structure and quantum mechanical studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Salim R, Nahlé A, El-Hajjaji F, Ech-chihbi E, Benhiba F, El Kalai F, Benchat N, Oudda H, Guenbour A, Taleb M, Warad I, Zarrouk A. Experimental, Density Functional Theory, and Dynamic Molecular Studies of Imidazopyridine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521020083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Modeling the conformational preference, spectroscopic properties, UV light harvesting efficiency, biological receptor inhibitory ability and other physico-chemical properties of five imidazole derivatives using quantum mechanical and molecular mechanics tools. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112871] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Soltanabadi A, Bahrami M. Gas-phase electronic properties of tri-cationic imidazolium-based ionic liquids in comparison with mono- and di-cationic ionic liquids. J Mol Graph Model 2020; 96:107529. [PMID: 31918318 DOI: 10.1016/j.jmgm.2019.107529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 10/25/2022]
Abstract
The optimized geometries, electronic structures, and gas-phase properties of widely applicable non-linear trigeminal tri-cationic ILs (TT-X3) were investigated using density functional theory (DFT) calculations and compared with mono- (M-X) and di-cationic (D-X2) ionic liquids. The studied ILs are based on the imidazolium cation containing halide (X‾) anions, where X‾ = Cl‾, Br‾ and I‾. Inter-molecular hydrogen bonds were studied by atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Accordingly the most significant cation-anion charge transfer is related to C1-H1 … X (X = Cl, Br, I) interaction which strongly occurs in TT-X3 ILs and especially in TT-Cl3. Among ILs under investigation, TT-Cl3 has the strongest cation-anion interaction. Also M - I IL has the largest and D-Cl2 has the smallest electrical dipole moment.
Collapse
Affiliation(s)
- Azim Soltanabadi
- Department of Physical Chemistry, Faculty of Chemistry, Razi University, Kermanshahm, Iran.
| | - Maryam Bahrami
- Department of Chemistry, Shiraz University, Shiraz, 71946, Iran.
| |
Collapse
|
12
|
Ghasemi AS, Soltani A, Karimnia M, Ashrafi F, Heidari F, Majidian M. A study on the effect of 1-butyl-4-methylpyridinium bromide adsorption on the structural and electronic properties of B12N12 nano-cage. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Prasad KS, Pillai RR, Armaković S, Armaković SJ. Photophysical properties and theoretical investigations of newly synthesized pyrene-naphthalene based Schiff base ligand and its copper(II) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
|
15
|
Nayak N, Prasad KS, Pillai RR, Armaković S, Armaković SJ. Remarkable colorimetric sensing behavior of pyrazole-based chemosensor towards Cu(ii) ion detection: synthesis, characterization and theoretical investigations. RSC Adv 2018; 8:18023-18029. [PMID: 35542090 PMCID: PMC9080470 DOI: 10.1039/c8ra02905a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
We report the synthesis of a new imine based ligand, 3-((3-methoxybenzylidene)amino)-1H-pyrazol-5-ol (HL) and its Cu(ii) complexes in 2 : 1 (HL : metal) and 1 : 1 : 1 (HL : metal : HQ) stoichiometric ratio using 8-hydroxyquinoline (HQ) as an additional bidentate ligand. The synthesized ligand (HL) and its Cu(ii) complexes (1 and 2) are structurally characterized using FT-IR, electronic absorption and emission, NMR and MS techniques. Furthermore, the complexation of Cu2+ with HL leads to the immediate formation of brown colour solution which indicates that HL can act as simple colorimetric sensor for Cu2+ ions. We further investigated that the sensor could selectively bind to the Cu2+ ions even in the presence of competitive ions such as Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Ag+ and Na+ ions in aqueous solutions which was studied by electronic absorption spectroscopy. The HL ligand has been investigated for its reactive properties by density functional theory (DFT) calculations. Quantum molecular descriptors describing local reactive properties have been calculated in order to identify the most reactive molecule sites of title compounds. DFT calculations encompassed molecular electrostatic potential (MEP), local average ionization energies (ALIE), Fukui functions and bond dissociation energies for hydrogen abstraction (H-BDE).
Collapse
Affiliation(s)
- Nagaraj Nayak
- Chemistry Group, Manipal Centre for Natural Sciences, Manipal Academy of Higher Education (MAHE) Manipal Karnataka - 576 104 India
| | - Kollur Shiva Prasad
- Chemistry Group, Manipal Centre for Natural Sciences, Manipal Academy of Higher Education (MAHE) Manipal Karnataka - 576 104 India
| | | | - Stevan Armaković
- University of Novi Sad, Faculty of Sciences, Department of Physics Trg D. Obradovića 4 21000 Novi Sad Serbia
| | - Sanja J Armaković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection Trg D. Obradovića 3 21000 Novi Sad Serbia
| |
Collapse
|
16
|
Thomas R, Hossain M, Mary YS, Resmi K, Armaković S, Armaković SJ, Nanda AK, Ranjan VK, Vijayakumar G, Van Alsenoy C. Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Hossain M, Thomas R, Mary YS, K.S.Resmi, Armaković S, Armaković SJ, Nanda AK, Vijayakumar G, Alsenoy CV. Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|