1
|
David IG, Iorgulescu EE, Popa DE, Buleandra M, Cheregi MC, Noor H. Curcumin Electrochemistry-Antioxidant Activity Assessment, Voltammetric Behavior and Quantitative Determination, Applications as Electrode Modifier. Antioxidants (Basel) 2023; 12:1908. [PMID: 38001760 PMCID: PMC10669510 DOI: 10.3390/antiox12111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Curcumin (CU) is a polyphenolic compound extracted from turmeric, a well-known dietary spice. Since it has been shown that CU exerts beneficial effects on human health, interest has increased in its use but also in its analysis in different matrices. CU has an antioxidant character and is electroactive due to the presence of phenolic groups in its molecule. This paper reviews the data reported in the literature regarding the use of electrochemical techniques for the assessment of CU antioxidant activity and the investigation of the voltammetric behavior at different electrodes of free or loaded CU on various carriers. The performance characteristics and the analytical applications of the electrochemical methods developed for CU analysis are compared and critically discussed. Examples of voltammetric investigations of CU interaction with different metallic ions or of CU or CU complexes with DNA as well as the CU applications as electrode modifiers for the enhanced detection of various chemical species are also shown.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Carmen Cheregi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania;
- Medlife-Polisano Hospital, Strada Izvorului 1A, 550172 Sibiu, Romania
| |
Collapse
|
2
|
Martínez-Guerra J, Palomar-Pardavé M, Romero-Romo M, Corona-Avendaño S, Guzmán-Hernández DS, Rojas-Hernández A, Ramírez-Silva MT. On the curcumin and β‐cyclodextrin interaction in aqueous media. Spectrophotometric and electrochemical study. ChemElectroChem 2022. [DOI: 10.1002/celc.202101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge Martínez-Guerra
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. Vicentina, CDMXIztapalapa 09340 CDMX MEXICO
| | - Manuel Palomar-Pardavé
- Metropolitan Autonomous University Azcapotzalco: Universidad Autonoma Metropolitana Azcapotzalco Materiales Av. San Pablo180Col. Reynosa-Tamaulipas 02200 México MEXICO
| | - Mario Romero-Romo
- Metropolitan Autonomous University Azcapotzalco: Universidad Autonoma Metropolitana Azcapotzalco Materiales Av. San Pablo 180Col. Reynosa-TamaulipasAzcapotzalco 02200 CDMX MEXICO
| | - Silvia Corona-Avendaño
- Metropolitan Autonomous University Azcapotzalco: Universidad Autonoma Metropolitana Azcapotzalco Materiales Av. San Pablo 180Col. Reynosa-TamaulipasAzcapotzalco 02200 CDMX MEXICO
| | - Dafne-Sarahia Guzmán-Hernández
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. VicentinaIztapalapa 09340 CDMX MEXICO
| | - Alberto Rojas-Hernández
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. VicentinaIztapalapa 09340 CDMX MEXICO
| | - María Teresa Ramírez-Silva
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. VicentinaIztapalapa 09340 CDMX MEXICO
| |
Collapse
|
3
|
Kartika AE, Setiyanto H, Manurung RV, Jenie SNA, Saraswaty V. Silver Nanoparticles Coupled with Graphene Nanoplatelets Modified Screen-Printed Carbon Electrodes for Rhodamine B Detection in Food Products. ACS OMEGA 2021; 6:31477-31484. [PMID: 34869974 PMCID: PMC8637599 DOI: 10.1021/acsomega.1c03414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
A rapid, simple, and sensitive voltammetric sensor has been fabricated to determine Rhodamine B (RhB), a textile coloring agent. Silver nanoparticles (AgNPs) were synthesized by the chemical reduction method of silver nitrate and sodium citrate. Graphene nanoplatelets (GPLs) and AgNPs were drop-casted on the surface of a working electrode of a screen-printed carbon electrode (SPCE), forming the SPCE-GPLs/AgNPs samples. Scanning electron microscopy-energy dispersive X-ray and cyclic voltammetry confirmed the altered surface of the SPCE. The square wave voltammetry was used for the electrochemical determination of RhB. The SPCE-GPLs/AgNPs demonstrated electrochemical responses to detect RhB with a linear range of 2-100 μM, and the limit of detection was 1.94 μM. The SPCE-GPLs/AgNPs demonstrated a selective detection of RhB in the presence of common interfering compounds present in the food samples, including sucrose and monosodium glutamate. Furthermore, the sensor presented good reproducibility as well as repeatability in the detection of RhB. When the sensor was used to determine RhB in an actual food sample, similar results were shown as suggested by UV-vis spectroscopy analysis. Hence, the fabricated sensor can be applied for the detection of RhB in food samples.
Collapse
Affiliation(s)
- Andi Eka Kartika
- Department
of Chemistry (Analytical Chemistry Research Group), Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Bandung 40132, Indonesia
| | - Henry Setiyanto
- Department
of Chemistry (Analytical Chemistry Research Group), Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Bandung 40132, Indonesia
- . Fax: +62-22-2504154. Phone: +62-22-2502103
| | - Robeth Viktoria Manurung
- Research
Center for Electronics & Telecommunication, National Research and Innovation Agency Republic of Indonesia, Bandung 40135, Indonesia
- . Phone: +62 815 871 4667
| | - Siti Nurul Aisyiyah Jenie
- Research
Center for Chemistry, National Research
and Innovation Agency Republic of Indonesia, Tangerang Selatan 15314 Indonesia
| | - Vienna Saraswaty
- Research
Unit for Clean Technology, National Research
and Innovation Agency Republic of Indonesia, Bandung 40135, Indonesia
| |
Collapse
|
4
|
Housaindokht MR, Janati‐Fard F, Ashraf N. Recent advances in applications of surfactant‐based voltammetric sensors. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Fatemeh Janati‐Fard
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Narges Ashraf
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
5
|
Rezayi M, Mahmoodi P, Langari H, Behnam B, Sahebkar A. Conjugates of Curcumin with Graphene and Carbon Nanotubes: A Review on Biomedical Applications. Curr Med Chem 2021; 27:6849-6863. [PMID: 31724497 DOI: 10.2174/0929867326666191113145745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
In the last decade, the use of carbon nanotubes and graphenes has been on the rise for various nanobiotechnological applications. Owing to their special characteristics, these two nanostructures of carbon allotropes have been studied for their capacity in the detection and treatment of many diseases. On the other hand, curcumin, a well-known antioxidant and anticancer natural product, is being extensively studied for numerous medicinal applications. Interestingly, many reports have shown great potentials of conjugates of curcumin and carbon nanotubes or graphenes. These conjugates, when properly designed and functionalized with biomolecules, could represent the valuable properties of each component alone while they could be effective in overcoming the poor solubility issues of both curcumin and Carbon Nanomaterials (CNMs). In this case, curcumin conjugates with CNMs seem to be very promising in biosensing applications and the detection of many biomolecules, especially, curcumin has been reported to be very effective with these conjugates. Also, the delivery of curcumin using functionalized SWCNTs was evaluated for its ability to load and release curcumin, to protect curcumin from degradation and to enhance its solubility. It is proposed that other properties of these conjugates are still to be discovered and the interdisciplinary approaches among biology, medicine, chemistry, and material engineering will accelerate the applications of these novel materials. This review aims to summarize the findings on the applications of CNM conjugates of curcumin.
Collapse
Affiliation(s)
- Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564,
Iran,Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical
Sciences, Mashhad 9177948564, Iran
| | - Pegah Mahmoodi
- Department of Biology, Mashhad Branch, Islamic Azad University,
Mashhad 9177948564, Iran
| | - Hadis Langari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical
Sciences, Mashhad 9177948564, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
6
|
Mohajeri M, Behnam B, Tasbandi A, Jamialahmadi T, Sahebkar A. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:55-74. [PMID: 34331684 DOI: 10.1007/978-3-030-56153-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin, the main active constituent of turmeric (Curcuma longa L.), is a naturally occurring phenolic compound with a wide variety of pharmacological activities. Although it has multiple pharmaceutical properties, its bioavailability and industrial usage are hindered due to rapid hydrolysis and low water solubility. Due to the growing market of curcumin, exact determination of curcumin in trade and human biological samples is important for monitoring therapeutic actions. Different nanomaterials have been suggested for sensing curcumin; and in this case, carbon-based nanomaterials (CNMs) are one of the most outstanding developments in nanomedicine, biosensing, and regenerative medicine. There are a considerable number of reports which have shown interesting potential of CNMs-based biosensors in the sensitive and selective detection of curcumin. Therefore, this review aims to increase understanding the interaction of curcumin with CNMs in the context of biosensing.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran. .,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Aida Tasbandi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
7
|
Poly(glutamine) film-coated carbon nanotube paste electrode for the determination of curcumin with vanillin: an electroanalytical approach. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Multi-walled carbon nanotube modified glassy carbon electrode as curcumin sensor. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02615-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Mehdinia A, Mirzaeipour R, Jabbari A. Nanosized Fe3O4–curcumin conjugates for adsorption of heavy metals from seawater samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01619-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Electrochemiluminescence "turn-off" detection of curcumin via energy transfer using luminol-doped silica nanoparticles. Mikrochim Acta 2019; 186:409. [PMID: 31183618 DOI: 10.1007/s00604-019-3556-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
A method is presented for electrochemiluminescent (ECL) detection of the food additive curcumin via an energy transfer strategy and by using luminol-doped silica nanoparticles (luminol-NPs). The ECL emission of the luminol-NPs (peaking at 425 nm) is reduced in the presence of curcumin due to spectral overlap. The assay can be performed within 1 min, response is linear in the 0.1 to 100 µM curcumin concentration range, and the limit of detection is 32 nM. The method is selective over many ions, adenosine triphosphate, ascorbic acid, cysteine and folic acid. It was successfully applied to the determination of curcumin in spiked human serum and urine. The average recoveries range from 99.0 to 102.6%. Graphical abstract Electrochemiluminescence (ECL) "turn-off" detection of curcumin at levels as low as 32 nM via energy transfer using luminol-doped silica nanoparticles. No hydrogen peroxide (H2O2) is used in ECL detection which makes the luminol-NPs ECL system more stable than the conventional luminol-H2O2 ECL system.
Collapse
|