1
|
Mercadal P, González A, Beloqui A, Tomé LC, Mecerreyes D, Calderón M, Picchio ML. Eutectogels: The Multifaceted Soft Ionic Materials of Tomorrow. JACS AU 2024; 4:3744-3758. [PMID: 39483226 PMCID: PMC11522931 DOI: 10.1021/jacsau.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class of materials consists of a eutectic solvent immobilized in a three-dimensional network structure. The use of eco-friendly and cost-effective eutectic solvents further emphasizes the appeal of these materials in multiple applications. Eutectogels exhibit key characteristics of most eutectic solvents, including environmental friendliness, facile preparation, low vapor pressure, and good ionic conductivity. Moreover, they can be tailored to display functionalities such as self-healing capability, adhesiveness, and antibacterial properties, which are facilitated by incorporating specific combinations of the eutectic mixture constituents. This perspective article delves into the current landscape and challenges associated with eutectogels, particularly focusing on their potential applications in CO2 separation, drug delivery systems, battery technologies, biocatalysis, and food packaging. By exploring these diverse realms, we aim to shed light on the transformative capabilities of eutectogels and the opportunities they present to address pressing industrial, academic, and environmental challenges.
Collapse
Affiliation(s)
- Pablo
A. Mercadal
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
- Facultad
de Ciencias Agropecuarias, Departamento de Recursos Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Agustín González
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
| | - Ana Beloqui
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Liliana C. Tomé
- CEMMPRE,
ARISE, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - David Mecerreyes
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Matias L. Picchio
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
2
|
Mishra R, Bhawnani R, Sartape R, Chauhan R, Thorat AS, Singh MR, Shah JK. Role of Intermolecular Interactions in Deep Eutectic Solvents for CO 2 Capture: Vibrational Spectroscopy and Quantum Chemical Studies. J Phys Chem B 2024; 128:10214-10229. [PMID: 39381893 PMCID: PMC11492266 DOI: 10.1021/acs.jpcb.4c04509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Recent research and reviews on CO2 capture methods, along with advancements in industry, have highlighted high costs and energy-intensive nature as the primary limitations of conventional direct air capture and storage (DACS) methods. In response to these challenges, deep eutectic solvents (DESs) have emerged as promising absorbents due to their scalability, selectivity, and lower environmental impact compared to other absorbents. However, the molecular origins of their enhanced thermal stability and selectivity for DAC applications have not been explored before. Therefore, the current study focuses on a comprehensive investigation into the molecular interactions within an alkaline DES composed of potassium hydroxide (KOH) and ethylene glycol (EG). Combining Fourier transform infrared (FT-IR) and quantum chemical calculations, the study reports structural changes and intermolecular interactions induced in EG upon addition of KOH and its implications on CO2 capture. Experimental and computational spectroscopic studies confirm the presence of noncovalent interactions (hydrogen bonds) within both EG and the KOH-EG system and point to the aggregation of ions at higher KOH concentrations. Additionally, molecular electrostatic potential (MESP) surface analysis, natural bond orbital (NBO) analysis, quantum theory of atoms-in-molecules (QTAIM) analysis, and reduced density gradient-noncovalent interaction (RDG-NCI) plot analysis elucidate changes in polarizability, charge distribution, hydrogen bond types, noncovalent interactions, and interaction strengths, respectively. Evaluation of explicit and hybrid models assesses their effectiveness in representing intermolecular interactions. This research enhances our understanding of molecular interactions in the KOH-EG system, which are essential for both the absorption and desorption of CO2. The study also aids in predicting and selecting DES components, optimizing their ratios with salts, and fine-tuning the properties of similar solvents and salts for enhanced CO2 capture efficiency.
Collapse
Affiliation(s)
- Rashmi Mishra
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Rajan Bhawnani
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Rohan Sartape
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Rohit Chauhan
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Amey S. Thorat
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Meenesh R. Singh
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Jindal K. Shah
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
3
|
Fan J, Zhang X, He N, Song F, Qu H. Deep Eutectic Solvent + Water System in Carbon Dioxide Absorption. Molecules 2024; 29:3579. [PMID: 39124983 PMCID: PMC11314133 DOI: 10.3390/molecules29153579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In the present work, deep eutectic solvents (DESs) were synthesized in a one-step process by heating the hydrogen bond acceptors (HBAs) tetrabutylammonium bromide and tetrabutylphosphonium bromide, along with two hydrogen bond donors (HBDs) ethanolamine and N-methyldiethanolamine, which were mixed in certain molar ratios. This mixture was then mixed with water to form a DES + water system. The densities of the prepared DES + water systems were successfully measured using the U-tube oscillation method under atmospheric pressure over a temperature range of 293.15-363.15 K. The CO2 trapping capacity of the DES + water systems was investigated using the isovolumetric saturation technique at pressures ranging from 0.1 MPa to 1 MPa and temperatures ranging from 303.15 K to 323.15 K. A semi-empirical model was employed to fit the experimental CO2 solubility data, and the deviations between the experimental and fitted values were calculated. At a temperature of 303.15 K and a pressure of 100 kPa, the CO2 solubilities in the DES + water systems of TBAB and MEA, with molar ratios of 1:8, 1:9, and 1:10, were measured to be 0.1430 g/g, 0.1479 g/g, and 0.1540 g/g, respectively. Finally, it was concluded that the DES + water systems had a superior CO2 capture capacity compared to the 30% aqueous monoethanolamine solution commonly used in industry, indicating the potential of DES + water systems for CO2 capture.
Collapse
Affiliation(s)
| | | | | | | | - Hongwei Qu
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China; (J.F.); (X.Z.); (N.H.); (F.S.)
| |
Collapse
|
4
|
Chen M, Zhou Y, Lu Q, Yang D. CO 2 capture by imidazolium-based deep eutectic solvents: the effect of steric hindrance of N-heterocyclic carbenes. Chem Commun (Camb) 2024; 60:7061-7064. [PMID: 38904326 DOI: 10.1039/d4cc02422b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
CO2 capture by deep eutectic solvents (DESs) formed between 1,3-bis(isopropyl)imidazolium 1,2,4-triazolide ([IiPim][Triz]) and ethylene glycol (EG) is investigated in this study. [IiPim][Triz]-EG DESs exhibit a capacity of ∼1.0 mol CO2 per mol DES at 1.0 atm and 25 °C. Surprisingly, mechanistic results disclose that CO2 reacts with EG but does not bind with the C-2 site of the [IiPim]+ cation, which may be due to the high steric hindrance of the C-2 site of the N-heterocyclic carbene IiPim present in [IiPim][Triz]-EG DESs.
Collapse
Affiliation(s)
- Mingzhe Chen
- School of Science, China University of Geosciences, Beijing 100083, China.
| | - Yi Zhou
- School of Science, China University of Geosciences, Beijing 100083, China.
| | - Qing Lu
- School of Science, China University of Geosciences, Beijing 100083, China.
| | - Dezhong Yang
- School of Science, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
5
|
Salahshoori I, Baghban A, Yazdanbakhsh A. Novel hybrid QSPR-GPR approach for modeling of carbon dioxide capture using deep eutectic solvents. RSC Adv 2023; 13:30071-30085. [PMID: 37842683 PMCID: PMC10573873 DOI: 10.1039/d3ra05360a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, deep eutectic solvents (DESs) have garnered considerable attention for their potential in carbon capture and utilization processes. Predicting the carbon dioxide (CO2) solubility in DES is crucial for optimizing these solvent systems and advancing their application in sustainable technologies. In this study, we presented an evolving hybrid Quantitative Structure-Property Relationship and Gaussian Process Regression (QSPR-GPR) model that enables accurate predictions of CO2 solubility in various DESs. The QSPR-GPR model combined the strengths of both approaches, leveraging molecular descriptors and structural features of DES components to establish a robust and adaptable predictive framework. Through a systematic evolution process, we iteratively refined the model, enhancing its performance and generalization capacity. By incorporating experimental CO2 solubility data in varied DES compositions and temperatures, we trained the model to capture the intricate solubility behaviour precisely. The analytical capability of the evolving hybrid model was validated against an extensive dataset of experimental CO2 solubility values, demonstrating its superiority over individual QSPR and GPR models. The model achieves high accuracy, capturing the complex interactions between CO2 and DES components under varying thermodynamic conditions. The versatility of the evolving hybrid model was highlighted by its ability to accommodate new experimental data and adapt to different DES compositions and temperatures. The proposed QSPR-GPR model presented a powerful tool for predicting CO2 solubility in DES, providing valuable insights for designing and optimizing solvent systems in carbon capture technologies. The model's remarkable performance enhances our understanding of CO2 solubility mechanisms and contributes to sustainable solutions for mitigating greenhouse gas emissions. As research in DESs progresses, the evolving hybrid QSPR-GPR model offers a versatile and accurate means for predicting CO2 solubility, supporting advancements in carbon capture and utilization processes towards a greener and more sustainable future.
Collapse
Affiliation(s)
- Iman Salahshoori
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus King George V Avenue Durban 4041 South Africa
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute P.O. Box 14965-115 Tehran Iran
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University Tehran Iran
| | | | | |
Collapse
|
6
|
Cichowska-Kopczyńska I, Nowosielski B, Warmińska D. Deep Eutectic Solvents: Properties and Applications in CO 2 Separation. Molecules 2023; 28:5293. [PMID: 37513167 PMCID: PMC10384334 DOI: 10.3390/molecules28145293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Nowadays, many researchers are focused on finding a solution to the problem of global warming. Carbon dioxide is considered to be responsible for the "greenhouse" effect. The largest global emission of industrial CO2 comes from fossil fuel combustion, which makes power plants the perfect point source targets for immediate CO2 emission reductions. A state-of-the-art method for capturing carbon dioxide is chemical absorption using an aqueous solution of alkanolamines, most frequently a 30% wt. solution of monoethanolamine (MEA). Unfortunately, the usage of alkanolamines has a number of drawbacks, such as the corrosive nature of the reaction environment, the loss of the solvent due to its volatility, and a high energy demand at the regeneration step. These problems have driven the search for alternatives to that method, and deep eutectic solvents (DESs) might be a very good substitute. Many types of DESs have thus far been investigated for efficient CO2 capture, and various hydrogen bond donors and acceptors have been used. Deep eutectic solvents that are capable of absorbing carbon dioxide physically and chemically have been reported. Strategies for further CO2 absorption improvement, such as the addition of water, other co-solvents, or metal salts, have been proposed. Within this review, the physical properties of DESs are presented, and their effects on CO2 absorption capacity are discussed in conjunction with the types of HBAs and HBDs and their molar ratios. The practical issues of using DESs for CO2 separation are also described.
Collapse
Affiliation(s)
- Iwona Cichowska-Kopczyńska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Bartosz Nowosielski
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Dorota Warmińska
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
7
|
Biswas R, Metya AK, Abebe KM, Gedf SA, Melese BT. Carbon dioxide solubility in choline chloride-based deep eutectic solvents under diverse conditions. J Mol Model 2023; 29:236. [PMID: 37418044 DOI: 10.1007/s00894-023-05643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
CONTEXT Global warming is a severe problem experiencing the climate crisis due to rising CO2 emissions. Deep eutectic solvents (DESs) have recently attracted a lot of attention as potential absorbents to mitigate carbon dioxide CO2 emissions because of their large CO2 capacities and stability under diverse conditions. Designing a potent DES requires knowledge of molecular-level understanding including structure, dynamics, and interfacial properties in DESs. In this study, we investigate the CO2 sorption and diffusion in different DESs at different temperatures and pressure using molecular dynamics (MD) simulations. Our results demonstrate that CO2 molecules preferentially concentrate at the CO2-DES interface, and the diffusion of CO2 in bulk DESs increases with increasing pressure and temperature. The solubility of CO2 in the three DESs increases as ChCL-ethylene glycol < ChCL-urea < ChCL-glycerol at high pressure (58.6 bar). METHODS The initial configuration for MD simulations included DES and CO2 and produced the solvation box using PACKMOL software. The geometries are optimized in the Gaussian 09 software at the theoretical level of B3LYP/6-311 + G*. The partial atomic charges were fitted to an electrostatic surface potential using the CHELPG method. MD simulations were carried out by using the NAMD version 2.13 software. VMD software was used to take the snapshots. TRAVIS software is used to determine spatial distribution functions.
Collapse
Affiliation(s)
- Rima Biswas
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| | - Atanu Kumar Metya
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Patna, 801106, Bihar, India
| | - Kindenew Mesenbet Abebe
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Sara Admasu Gedf
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Birtukan Tsegaye Melese
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| |
Collapse
|
8
|
Abdrabou HK, AlNashef I, Abu Zahra M, Mokraoui S, Ali E, Hadj-Kali MK. Experimental investigation of novel ternary amine-based deep eutectic solvents for CO2 capture. PLoS One 2023; 18:e0286960. [PMID: 37352169 PMCID: PMC10289352 DOI: 10.1371/journal.pone.0286960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
This study investigates the effect of using water as a low-viscosity component in ternary amine-based deep eutectic solvents (DESs) on the physicochemical properties, thermal stability, and CO2 absorption capacity of the resulting DESs. It should be emphasized that water is a component of the ternary DES. The effect of water content in the DES, type of hydrogen bond acceptors (HBAs), hydrogen bond donors (HBDs), and HBA:HBD ratio on the above parameters was investigated. Moreover, the effect of temperature and pressure on the CO2 absorption capacity of DESs was predicted using the predictive model COSMO-RS. This model was also used to predict the CO2 solubility in the DESs and the results were compared with the experimental values. The results showed that the addition of small amounts of water, e.g., 5 and 10 wt% during preparation, can significantly decrease the viscosity of the resulting DESs, up to 25% at room temperature, while maintaining the high CO2 absorption capacity and high thermal stability. The ternary DESs based on MEA exhibited a high CO2 absorption capacity of 0.155-0.170 g CO2 / g DES. The ternary DESs were found to be thermally stable with a decomposition temperature of 125°C, which promotes the use of such solvents in post-combustion capture processes. Finally, COSMO-RS proved to be a suitable tool for qualitative prediction of CO2 solubility in DESs and demonstration of trends related to the effects of temperature, pressure, molar ratio, water content, HBD and HBA on CO2 solubility.
Collapse
Affiliation(s)
- Hossam K. Abdrabou
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Inas AlNashef
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Zahra
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Salim Mokraoui
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Emad Ali
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed K. Hadj-Kali
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Abranches DO, Coutinho JAP. Everything You Wanted to Know about Deep Eutectic Solvents but Were Afraid to Be Told. Annu Rev Chem Biomol Eng 2023; 14:141-163. [PMID: 36888992 DOI: 10.1146/annurev-chembioeng-101121-085323] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Are deep eutectic solvents (DESs) a promising alternative to conventional solvents? Perhaps, but their development is hindered by a plethora of misconceptions. These are carefully analyzed here, beginning with the very meaning of DESs, which has strayed far beyond its original scope of eutectic mixtures of Lewis or Brønsted acids and bases. Instead, a definition that is grounded on thermodynamic principles and distinguishes between eutectic and deep eutectic is encouraged, and the types of precursors that can be used to prepare DESs are reviewed. Landmark works surrounding the sustainability, stability, toxicity, and biodegradability of these solvents are also discussed, revealing piling evidence that numerous DESs reported thus far, particularly those that are choline based, lack sufficient sustainability-related traits to be considered green solvents. Finally, emerging DES applications are reviewed, emphasizing their most remarkable feature: the ability to liquefy a solid compound with a target property, allowing its use as a liquid solvent.
Collapse
Affiliation(s)
- Dinis O Abranches
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal; ,
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal; ,
| |
Collapse
|
10
|
Raut DS, Joshi VA, Khan S, Kundu D. A-Priori Screening of Deep Eutectic Solvent for Enhanced Oil Recovery Application Using COSMO-RS Framework. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Ghanbari-Kalajahi H, Haghtalab A. Vapor-Liquid Equilibrium of Carbon Dioxide Solubility in a Deep Eutectic Solvent (Choline Chloride: MDEA) and a mixture of DES with Piperazine-Experimental Study and Modeling. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Zhang J, Yin J, Zhang Y, Zhu T, Ran H, Jiang W, Li H, Li H, Zhang M. Insights into the formation mechanism of aliphatic acid-choline chloride deep eutectic solvents by theoretical and experimental research. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Foorginezhad S, Yu G, Ji X. Reviewing and screening ionic liquids and deep eutectic solvents for effective CO2 capture. Front Chem 2022; 10:951951. [PMID: 36034653 PMCID: PMC9399623 DOI: 10.3389/fchem.2022.951951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
CO2 capture is essential for both mitigating CO2 emissions and purifying/conditioning gases for fuel and chemical production. To further improve the process performance with low environmental impacts, different strategies have been proposed, where developing liquid green absorbent for capturing CO2 is one of the effective options. Ionic liquids (IL)/deep eutectic solvents (DES) have recently emerged as green absorbents with unique properties, especially DESs also benefit from facile synthesis, low toxicity, and high biodegradability. To promote their development, this work summarized the recent research progress on ILs/DESs developed for CO2 capture from the aspects of those physical- and chemical-based, and COSMO-RS was combined to predict the properties that are unavailable from published articles in order to evaluate their performance based on the key properties for different IL/DES-based technologies. Finally, top 10 ILs/DESs were listed based on the corresponding criteria. The shared information will provide insight into screening and further developing IL/DES-based technologies for CO2 capture.
Collapse
Affiliation(s)
- Sahar Foorginezhad
- Energy Science/Energy Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Gangqiang Yu, ; Xiaoyan Ji,
| | - Xiaoyan Ji
- Energy Science/Energy Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
- *Correspondence: Gangqiang Yu, ; Xiaoyan Ji,
| |
Collapse
|
14
|
Parvaneh K, Haghbakhsh R, Duarte ARC, Raeissi S. Investigation of carbon dioxide solubility in various families of deep eutectic solvents by the PC-SAFT EoS. Front Chem 2022; 10:909485. [PMID: 36017164 PMCID: PMC9395712 DOI: 10.3389/fchem.2022.909485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Having been introduced in 2003, Deep Eutectic Solvents (DESs) make up a most recent category of green solvents. Due to their unique characteristics, and also their tunable physical properties, DESs have shown high potentials for use in various applications. One of the investigated applications is CO2 absorption. The thermodynamic modeling of CO2 solubility in DESs has been pursued by a number of researchers to estimate the capacity and capability of DESs for such tasks. Among the advanced equations of state (EoSs), the Perturbed Chain-Statistical Associating Fluid Theory (PC-SAFT) is a well-known EoS. In this study, the performance of the PC-SAFT EoS for estimating CO2 solubility in various DESs, within wide ranges of temperatures and pressures, was investigated. A large data bank, including 2542 CO2 solubility data in 109 various-natured DESs was developed and used for this study. This is currently the most comprehensive study in the open literature on CO2 solubility in DESs using an EoS. For modeling, the DES was considered as a pseudo-component with a 2B association scheme. CO2 was considered as both an inert and a 2B-component and the results of each association scheme were compared. Considering the very challenging task of modeling a complex hydrogen bonding mixture with gases, the results of AARD% being lower than 10% for both of the investigated association schemes of CO2, showed that PC-SAFT is a suitable model for estimating CO2 solubilities in various DESs. Also, by proposing generalized correlations to predict the PC-SAFT parameters, covering different families of DESs, the developed model provides a global technique to estimate CO2 solubilities in new and upcoming DESs, avoiding the necessity of further experimental work. This can be most valuable for screening and feasibility studies to select potential DESs from the innumerable options available.
Collapse
Affiliation(s)
- Khalil Parvaneh
- Department of Chemical Engineering, University of Gonabad, Gonabad, Iran
| | - Reza Haghbakhsh
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana Rita C. Duarte
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sona Raeissi
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
- *Correspondence: Sona Raeissi,
| |
Collapse
|
15
|
Yu LY, Ren GP, Hou XJ, Wu KJ, He Y. Transition State Theory-Inspired Neural Network for Estimating the Viscosity of Deep Eutectic Solvents. ACS CENTRAL SCIENCE 2022; 8:983-995. [PMID: 35912349 PMCID: PMC9335917 DOI: 10.1021/acscentsci.2c00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 06/15/2023]
Abstract
The lack of accurate methods for predicting the viscosity of solvent materials, especially those with complex interactions, remains unresolved. Deep eutectic solvents (DESs), an emerging class of green solvents, have a severe lack of viscosity data, resulting in their application still staying at the stage of random trial and error, and it is difficult for them to be implemented on an industrial scale. In this work, we demonstrate the successful prediction of the viscosity of DESs based on the transition state theory-inspired neural network (TSTiNet). The TSTiNet adopts multilayer perceptron (MLP) for the transition state theory-inspired equation (TSTiEq) parameters calculation and verification using the most comprehensive DESs viscosity data set to date. For the energy parameters of the TSTiEq, the constant assumption and the fast iteration with the help of MLP can allow TSTiNet to achieve the best performance (the average absolute relative deviation on the test set of 6.84% and R 2 of 0.9805). Compared with the traditional machine learning methods, the TSTiNet has better generalization ability and dramatically reduces the maximum relative deviation of prediction under the constraints of the thermodynamic formulation. It requires only the structural information on DESs and is the most accurate and reliable model available for DESs viscosity prediction.
Collapse
Affiliation(s)
- Liu-Ying Yu
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Gao-Peng Ren
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Jing Hou
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Ke-Jun Wu
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, China
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Yuchen He
- State
Key Laboratory of Industrial Control Technology, College of Control
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Yu L, Hou X, Ren G, Wu K, He C. Viscosity model of deep eutectic solvents from group contribution method. AIChE J 2022. [DOI: 10.1002/aic.17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liu‐Ying Yu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
| | - Xiao‐Jing Hou
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
| | - Gao‐Peng Ren
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ke‐Jun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
- School of Chemical and Process Engineering University of Leeds Leeds UK
| | - Chao‐Hong He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
| |
Collapse
|
17
|
Ishaq M, Gilani MA, Ahmad F, Afzal ZM, Arshad I, Bilad MR, Ayub K, Khan AL. Theoretical and experimental investigation of CO2 capture through choline chloride based supported deep eutectic liquid membranes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity. CLEAN TECHNOLOGIES 2021. [DOI: 10.3390/cleantechnol3020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deep eutectic solvents (DES) are compounds of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) that contain a depressed melting point compared to their individual constituents. DES have been studied for their use as carbon capture media and biogas upgrading. However, contaminants’ presence in biogas might affect the carbon capture by DES. In this study, conductor-like screening model for real solvents (COSMO-RS) was used to determine the effect of temperature, pressure, and selective contaminants on five DES’ namely, choline chloride-urea, choline chloride-ethylene glycol, tetra butyl ammonium chloride-ethylene glycol, tetra butyl ammonium bromide-decanoic acid, and tetra octyl ammonium chloride-decanoic acid. Impurities studied in this paper are hydrogen sulfide, ammonia, water, nitrogen, octamethyltrisiloxane, and decamethylcyclopentasiloxane. At infinite dilution, CO2 solubility dependence upon temperature in each DES was examined by means of Henry’s Law constants. Next, the systems were modeled from infinite dilution to equilibrium using the modified Raoults’ Law, where CO2 solubility dependence upon pressure was examined. Finally, solubility of CO2 and CH4 in the various DES were explored with the presence of varying mole percent of selective contaminants. Among the parameters studied, it was found that the HBD of the solvent is the most determinant factor for the effectiveness of CO2 solubility. Other factors affecting the solubility are alkyl chain length of the HBA, the associated halogen, and the resulting polarity of the DES. It was also found that choline chloride-urea is the most selective to CO2, but has the lowest CO2 solubility, and is the most polar among other solvents. On the other hand, tetraoctylammonium chloride-decanoic acid is the least selective, has the highest maximum CO2 solubility, is the least polar, and is the least affected by its environment.
Collapse
|
19
|
Wazeer I, AlNashef IM, Al-Zahrani AA, Hadj-Kali MK. The subtle but substantial distinction between ammonium- and phosphonium-based deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Haghbakhsh R, Keshtkar M, Shariati A, Raeissi S. Experimental investigation of carbon dioxide solubility in the deep eutectic solvent (1 ChCl + 3 triethylene glycol) and modeling by the CPA EoS. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Luo Q, Hao J, Wei L, Zhai S, Xiao Z, An Q. Protic ethanolamine hydrochloride-based deep eutectic solvents for highly efficient and reversible absorption of NH3. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Pishro KA, Murshid G, Mjalli FS, Naser J. Carbon dioxide solubility in amine-based deep eutectic solvents: Experimental and theoretical investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Deng D, Deng X, Duan X, Gong L. Protic guanidine isothiocyanate plus acetamide deep eutectic solvents with low viscosity for efficient NH3 capture and NH3/CO2 separation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114719] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Wazeer I, Hadj-Kali MK, Al-Nashef IM. Utilization of Deep Eutectic Solvents to Reduce the Release of Hazardous Gases to the Atmosphere: A Critical Review. Molecules 2020; 26:E75. [PMID: 33375265 PMCID: PMC7795314 DOI: 10.3390/molecules26010075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
The release of certain gases to the atmosphere is controlled in many countries owing to their negative impact on the environment and human health. These gases include carbon dioxide (CO2), sulfur oxides (SOx), nitrogen oxides (NOx), hydrogen sulfide (H2S) and ammonia (NH3). Considering the major contribution of greenhouse gases to global warming and climate change, mitigation of these gases is one of the world's primary challenges. Nevertheless, the commercial processes used to capture these gases suffer from several drawbacks, including the use of volatile solvents, generation of hazardous byproducts, and high-energy demand. Research in green chemistry has resulted in the synthesis of potentially green solvents that are non-toxic, efficient, and environmentally friendly. Deep eutectic solvents (DESs) are novel solvents that upon wise choice of their constituents can be green and tunable with high biocompatibility, high degradability, and low cost. Consequently, the capture of toxic gases by DESs is promising and environmentally friendly and has attracted much attention during the last decade. Here, we review recent results on capture of these gases using different types of DESs. The effect of different parameters, such as chemical structure, molar ratio, temperature, and pressure, on capture efficiency is discussed.
Collapse
Affiliation(s)
- Irfan Wazeer
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Mohamed K. Hadj-Kali
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Inas M. Al-Nashef
- Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE;
| |
Collapse
|
25
|
Application of Prigogine–Flory–Patterson theory to correlate the thermodynamic properties of aqueous mixtures of some three-component deep eutectic solvents based on choline chloride and carboxylic acids at T = (288.15 to 318.15) K. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Investigation of CO2 solubility in monoethanolamine hydrochloride based deep eutectic solvents and physical properties measurements. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Li ZL, Zhong FY, Huang JY, Peng HL, Huang K. Sugar-based natural deep eutectic solvents as potential absorbents for NH3 capture at elevated temperatures and reduced pressures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
High CO2 absorption in new amine based-transition-temperature mixtures (deep eutectic analogues) and reporting thermal stability, viscosity and surface tension: Response surface methodology (RSM). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Sarmad S, Nikjoo D, Mikkola JP. Amine functionalized deep eutectic solvent for CO2 capture: Measurements and modeling. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113159] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Mat Hussin SA, Varanusupakul P, Shahabuddin S, Yih Hui B, Mohamad S. Synthesis and characterization of green menthol-based low transition temperature mixture with tunable thermophysical properties as hydrophobic low viscosity solvent. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Liu Y, Yu H, Sun Y, Zeng S, Zhang X, Nie Y, Zhang S, Ji X. Screening Deep Eutectic Solvents for CO 2 Capture With COSMO-RS. Front Chem 2020; 8:82. [PMID: 32117899 PMCID: PMC7031488 DOI: 10.3389/fchem.2020.00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/24/2020] [Indexed: 11/29/2022] Open
Abstract
In this work, 502 experimental data for CO2 solubilities and 132 for Henry's constants of CO2 in DESs were comprehensively summarized from literatures and used for further verification and development of COSMO-RS. Large systematic deviations of 62. 2, 59.6, 63.0, and 59.1% for the logarithmic CO2 solubilities in the DESs (1:2, 1:3, 1:4, 1:5), respectively, were observed for the prediction with the original COSMO-RS, while the predicted Henry's constants of CO2 in the DESs (1:1.5, 1:2, 1:3, 1:4, 1:5) at temperatures ranging of 293.15–333.15 K are more accurate than the predicted CO2 solubility with the original COSMO-RS. To improve the performance of COSMO-RS, 502 data points of CO2 solubility in the DESs (1:2, 1:3, 1:4, 1:5) were used for correcting COSMO-RS with a temperature-pressure dependent parameter, and the CO2 solubility in the DES (1:6) was predicted to further verify the performance of the corrected model. The results indicate that the corrected COSMO-RS can significantly improve the model performance with the ARDs decreasing down to 6.5, 4.8, 6.5, and 4.5% for the DESs (1:2, 1:3, 1:4, and 1:5), respectively, and the corrected COSMO-RS with the universal parameters can be used to predict the CO2 solubility in DESs with different mole ratios, for example, for the DES (1:6), the corrected COSMO-RS significantly improves the prediction with an ARD of 10.3% that is much lower than 78.2% provided by the original COSMO-RS. Additionally, the result from COSMO-RS shows that the σ-profiles can reflect the strength of molecular interactions between an HBA (or HBD) and CO2, determining the CO2 solubility, and the dominant interactions for CO2 capture in DESs are the H-bond and Van der Waals force, followed by the misfit based on the analysis of the predicted excess enthalpies.
Collapse
Affiliation(s)
- Yanrong Liu
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
| | - Hang Yu
- State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Yunhao Sun
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
| | - Shaojuan Zeng
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiangping Zhang
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Yi Nie
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Suojiang Zhang
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
32
|
Karimi MB, Mohammadi F, Hooshyari K. Non-humidified fuel cells using a deep eutectic solvent (DES) as the electrolyte within a polymer electrolyte membrane (PEM): the effect of water and counterions. Phys Chem Chem Phys 2020; 22:2917-2929. [PMID: 31951238 DOI: 10.1039/c9cp06207f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, deep eutectic solvents (DESs) were prepared and employed as the electrolyte in Nafion membranes. Different factors, such as the water content and Nafion counterions (H+, Li+, Na+ and K+), which could influence the PEM performance, were evaluated. The obtained results showed that the presence of water may have a constructive or destructive effect on the DES and Nafion/DES properties, which should be considered for their final applications. Also, the electronegativity of the counterion can significantly influence the Nafion/DES proton conductivity. The prepared Nafion/DES composite membranes showed superconducting properties as a result of a Grotthuss-like mechanism for proton conduction. The conductivities of the prepared membranes were compared to those of other membranes based on an upper bound concept, which showed the potential use of DESs as a promising alternative to conventional ionic liquids. Finally, the fuel cell performances of the prepared membranes at different temperatures were evaluated.
Collapse
Affiliation(s)
- Mohammad Bagher Karimi
- Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, 14965-115 Tehran, Iran.
| | - Fereidoon Mohammadi
- Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, 14965-115 Tehran, Iran.
| | - Khadijeh Hooshyari
- Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
33
|
Jalaei Salmani H, Lotfollahi MN, Mazloumi SH. Phase equilibria modeling of polar systems with Cubic-Plus-Polar (CPP) equation of state. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Haghbakhsh R, Bardool R, Bakhtyari A, Duarte ARC, Raeissi S. Simple and global correlation for the densities of deep eutectic solvents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Shekaari H, Zafarani-Moattar MT, Mokhtarpour M, Faraji S. Volumetric and compressibility properties for aqueous solutions of choline chloride based deep eutectic solvents and Prigogine–Flory–Patterson theory to correlate of excess molar volumes at T = (293.15 to 308.15) K. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111077] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Experimental solubility of carbon dioxide in monoethanolamine, or diethanolamine or N-methyldiethanolamine (30 wt%) dissolved in deep eutectic solvent (choline chloride and ethylene glycol solution). J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Wang J, Cheng H, Song Z, Chen L, Deng L, Qi Z. Carbon Dioxide Solubility in Phosphonium-Based Deep Eutectic Solvents: An Experimental and Molecular Dynamics Study. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03740] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hongye Cheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Zhen Song
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
- Process Systems Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lifang Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælandsvei 4, 7491 Trondheim, Norway
| | - Zhiwen Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| |
Collapse
|
38
|
Cai C, Yu W, Wang C, Liu L, Li F, Tan Z. Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110957] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Kaith BS, Shanker U, Gupta B. One-pot green synthesis of polymeric nanocomposite: Biodegradation studies and application in sorption-degradation of organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:345-356. [PMID: 30639858 DOI: 10.1016/j.jenvman.2018.12.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
The research work proposes the synthesis of a nanocomposite hydrogel which is a dual combination of binary interpenetrating network (BIPN) and bismuth ferrite nanoparticles. BIPN synthesized from binary graft copolymer (BGC) used as starting material. The cross-linked network of BGC is interpenetrating the newly synthesized cross-linked network of poly(acrylic acid) and the product is named as BIPN. Binary graft copolymer had been synthesized from grafting of guggul aqueous extract with copolymeric chains of acrylamide (primary monomer) and acrylic acid (secondary monomer) crosslinked by N,N'-methylene bisacrylamide (MBA). The maximum percentage swelling was evaluated for BGC through optimization of various reaction parameters: amount of water, binary ratio of acrylamide to acrylic acid, concentrations of MBA, ammonium persulphate, pH, temperature and time. Considering pre-optimized parameters for BGC synthesis, BIPN formation required optimization of only acrylic acid. Maximum percentage swelling obtained was 1497.79% and 308.15% for BGC and BIPN, respectively. Maximum percentage biodegradation of 90.64% and 82.38% were calculated for BGC and BIPN, respectively using composting method. Degradation efficiency of brilliant blue (BB) and fuchsin basic (FB) dyes was in the order: Nanocomposite ≫ BIPN > BGC. Maximum percentage degradation observed in case of nanocomposite was 94.1% and 99.3% in sunlight for BB and FB, respectively. The interaction of dyes with the nanocomposite involved mainly ionic interactions. The adsorption models Freundlich and Langmuir were applicable to overall adsorption and degradation process of BB and FB, respectively. Maximum adsorption capacities corresponding to minimum concentration i.e. 10 mg L-1 for BB and FB were calculated as 0.409 mg g-1 and 0.439 mg g-1, respectively. Second order and first order kinetics were found to be suitable for BB and FB adsorption-degradation pathways, respectively. Intraparticle diffusion mechanism was favorable to both dyes and adsorption followed three steps. Gas chromatography coupled with mass spectrometric analysis could give the degraded products which was helpful in drawing degradation pathway. The degradation process involved active radical species (O2-., OH.) and they carry out oxidation-reduction reactions on dyes to give decolorized solution containing mineral ions.
Collapse
Affiliation(s)
- Balbir Singh Kaith
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar Punjab, India
| | - Uma Shanker
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar Punjab, India
| | - Bhuvanesh Gupta
- Department of Textile Technology, Indian Institute of Technology, Jalandhar Punjab, India
| |
Collapse
|
40
|
Liu F, Chen W, Mi J, Zhang J, Kan X, Zhong F, Huang K, Zheng A, Jiang L. Thermodynamic and molecular insights into the absorption of H
2
S, CO
2
, and CH
4
in choline chloride plus urea mixtures. AIChE J 2019. [DOI: 10.1002/aic.16574] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fujian Liu
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC‐CFC)School of Chemical Engineering, Fuzhou University Fuzhou Fujian China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan Hubei China
| | - Jinxing Mi
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC‐CFC)School of Chemical Engineering, Fuzhou University Fuzhou Fujian China
| | - Jia‐Yin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of EducationSchool of Resources Environmental and Chemical Engineering, Nanchang University Nanchang Jiangxi China
| | - Xun Kan
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC‐CFC)School of Chemical Engineering, Fuzhou University Fuzhou Fujian China
| | - Fu‐Yu Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of EducationSchool of Resources Environmental and Chemical Engineering, Nanchang University Nanchang Jiangxi China
| | - Kuan Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of EducationSchool of Resources Environmental and Chemical Engineering, Nanchang University Nanchang Jiangxi China
| | - An‐Min Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan Hubei China
| | - Lilong Jiang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC‐CFC)School of Chemical Engineering, Fuzhou University Fuzhou Fujian China
| |
Collapse
|
41
|
Deng D, Duan X, Gao B, Zhang C, Deng X, Gong L. Efficient and reversible absorption of NH3 by functional azole–glycerol deep eutectic solvents. NEW J CHEM 2019. [DOI: 10.1039/c9nj01788g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen bond donor (HBD) of glycerol and hydrogen bond acceptor (HBA) selected from azole compounds were paired to construct functional deep eutectic solvents (DESs) as NH3 absorbents.
Collapse
Affiliation(s)
- Dongshun Deng
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Zhejiang Province Key Laboratory of Biofuel
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Xiuzhi Duan
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Zhejiang Province Key Laboratory of Biofuel
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Bao Gao
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Zhejiang Province Key Laboratory of Biofuel
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Chao Zhang
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Zhejiang Province Key Laboratory of Biofuel
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Xiaoxia Deng
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Zhejiang Province Key Laboratory of Biofuel
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Lei Gong
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Zhejiang Province Key Laboratory of Biofuel
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|
42
|
High-pressure absorption study of CO 2 in aqueous N -methyldiethanolamine (MDEA) and MDEA-piperazine (PZ)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf] hybrid solvents. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Murshid G, Ghaedi H, Ayoub M, Garg S, Ahmad W. Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Ghaedi H, Ayoub M, Sufian S, Shariff AM, Murshid G, Hailegiorgis SM, Khan SN. Density, excess and limiting properties of (water and deep eutectic solvent) systems at temperatures from 293.15 K to 343.15 K. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|