1
|
Recent Development and Future Prospective of Tiwari and Das Mathematical Model in Nanofluid Flow for Different Geometries: A Review. Processes (Basel) 2023. [DOI: 10.3390/pr11030834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
The rapid changes in nanotechnology over the last ten years have given scientists and engineers a lot of new things to study. The nanofluid constitutes one of the most significant advantages that has come out of all these improvements. Nanofluids, colloid suspensions of metallic and nonmetallic nanoparticles in common base fluids, are known for their astonishing ability to transfer heat. Previous research has focused on developing mathematical models and using varied geometries in nanofluids to boost heat transfer rates. However, an accurate mathematical model is another important factor that must be considered because it dramatically affects how heat flows. As a result, before using nanofluids for real-world heat transfer applications, a mathematical model should be used. This article provides a brief overview of the Tiwari and Das nanofluid models. Moreover, the effects of different geometries, nanoparticles, and their physical properties, such as viscosity, thermal conductivity, and heat capacity, as well as the role of cavities in entropy generation, are studied. The review also discusses the correlations used to predict nanofluids’ thermophysical properties. The main goal of this review was to look at the different shapes used in convective heat transfer in more detail. It is observed that aluminium and copper nanoparticles provide better heat transfer rates in the cavity using the Tiwari and the Das nanofluid model. When compared to the base fluid, the Al2O3/water nanofluid’s performance is improved by 6.09%. The inclination angle of the cavity as well as the periodic thermal boundary conditions can be used to effectively manage the parameters for heat and fluid flow inside the cavity.
Collapse
|
2
|
Chandrawat RK, Joshi V, Anwar Bég O. Ion Slip and Hall Effects on Generalized Time-Dependent Hydromagnetic Couette Flow of Immiscible Micropolar and Dusty Micropolar Fluids with Heat Transfer and Dissipation: A Numerical Study. JOURNAL OF NANOFLUIDS 2021. [DOI: 10.1166/jon.2021.1792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The hydrodynamics of immiscible micropolar fluids are important in a variety of engineering problems, including biofluid dynamics of arterial blood flows, pharmacodynamics, Principle of Boundary layers, lubrication technology, short waves for heat-conducting fluids, sediment transportation,
magnetohydrodynamics, multicomponent hydrodynamics, and electrohydrodynamic. Motivated by the development of biological fluid modeling and medical diagnosis instrumentation, this article examines the collective impacts of ion slip, viscous dissipation, Joule heating, and Hall current on unsteady
generalized magnetohydrodynamic (MHD) Couette flow of two immiscible fluids. Two non-Newtonian incompressible magnetohydrodynamic micropolar and micropolar dusty (fluid-particle suspension) fluids are considered in a horizontal duct with heat transfer. No-slip boundary conditions are assumed
at the channel walls and constant pressure gradient. Continuous shear stress and fluid velocity are considered across the interface between the two immiscible fluids. The coupled partial differential equations are formulated for fluids and particle phases and the velocities, temperatures,
and microrotation profiles are obtained. Under the physically realistic boundary and interfacial conditions, the Modified cubic-Bspline differential quadrature approach (MCB-DQM) is deployed to obtain numerical results. The influence of the magnetic, thermal, and other pertinent parameters,
i.e. Hartmann magnetic number, Eckert (dissipation) number, Reynolds number, Prandtl number, micropolar material parameters, Hall and ion-slip parameters, particle concentration parameter, viscosity ratio, density ratio, and time on velocity, microrotation, and temperature characteristics
are illustrated through graphs. The MCB-DQM is found to be in good agreement with accuracy and the skin friction coefficient and Nusselt number are also explored. It is found that fluids and particle velocities are reduced with increasing Hartmann numbers whereas they are elevated with increment
in ion-slip and Hall parameters. Temperatures are generally enhanced with increasing Eckert number and viscosity ratio. The simulations are relevant to nuclear heat transfer control, MHD energy generators, and electromagnetic multiphase systems in chemical engineering.
Collapse
Affiliation(s)
| | - Varun Joshi
- Department of Mathematics, Lovely Professional University Jalandhar, 144411, India
| | - O. Anwar Bég
- Professor and Director-Metaphysical Engineering Sciences Group (MPESG), Department Mechanical/Aeronautical Engineering, School of Science, Engineering, Environment (SEE), Salford University, Manchester, M54WT, UK
| |
Collapse
|
3
|
Impacts of Amplitude and Local Thermal Non-Equilibrium Design on Natural Convection within NanoflUid Superposed Wavy Porous Layers. NANOMATERIALS 2021; 11:nano11051277. [PMID: 34068022 PMCID: PMC8152506 DOI: 10.3390/nano11051277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
A numerical study is presented for the thermo-free convection inside a cavity with vertical corrugated walls consisting of a solid part of fixed thickness, a part of porous media filled with a nanofluid, and a third part filled with a nanofluid. Alumina nanoparticle water-based nanofluid is used as a working fluid. The cavity’s wavy vertical surfaces are subjected to various temperature values, hot to the left and cold to the right. In order to generate a free-convective flow, the horizontal walls are kept adiabatic. For the porous medium, the Local Thermal Non-Equilibrium (LTNE) model is used. The method of solving the problem’s governing equations is the Galerkin weighted residual finite elements method. The results report the impact of the active parameters on the thermo-free convective flow and heat transfer features. The obtained results show that the high Darcy number and the porous media’s low modified thermal conductivity ratio have important roles for the local thermal non-equilibrium effects. The heat transfer rates through the nanofluid and solid phases are found to be better for high values of the undulation amplitude, the Darcy number, and the volume fraction of the nanofluid, while a limit in the increase of heat transfer rate through the solid phase with the modified thermal ratio is found, particularly for high values of porosity. Furthermore, as the porosity rises, the nanofluid and solid phases’ heat transfer rates decline for low Darcy numbers and increase for high Darcy numbers.
Collapse
|
4
|
A Review on the Control Parameters of Natural Convection in Different Shaped Cavities with and without Nanofluid. Processes (Basel) 2020. [DOI: 10.3390/pr8091011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Natural convection in cavities is an interesting subject for many researchers. Especially, in recent years, the number of articles written in this regard has grown enormously. This work provides a review of recent natural convection studies. At first, experimental studies were reviewed and, then, numerical studies were examined. Then, the articles were classified based on effective parameters. In each section, numerical studies were examined the parameters added to the cavity such as magnetic forces, fin, porous media and cavity angles. Moreover, studies on non-rectangular cavities were investigated. Free convection in enclosures depends more on the fluid velocity relative to the forced convection, leading to the opposite effect of some parameters that should essentially enhance rate of heat transfer. Nanoparticle addition, magnetic fields, fins, and porous media may increase forced convection. However, they can reduce free convection due to the reduction in fluid velocity. Thus, these parameters need more precision and sometimes need the optimization of effective parameters.
Collapse
|
5
|
Mehryan S, Ghalambaz M, Chamkha AJ, Izadi M. Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.04.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Izadi M, Javanahram M, Zadeh SMH, Jing D. Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field-dependent viscosity. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.04.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Alhashash A. Natural convection of Nanoliquid from a Cylinder in Square Porous Enclosure using Buongiorno's Two-phase Model. Sci Rep 2020; 10:143. [PMID: 31924835 PMCID: PMC6954208 DOI: 10.1038/s41598-019-57062-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Natural convection of nanoliquid in a square porous enclosure has been studied using non homogeneous two-phase Buongiorno's model. The outer of enclosure has cold temperature and a circular cylinder is put at the center. A finite heated segment is located on the top cylinder surface which is otherwise insulated. The momentum in the porous layer is modeled applying the Brinkman-Forchheimer equations. The analysis are conducted in the following interval of the associated groups: the portion of heated surface (5% ≤ H ≤ 100%), the concentration (0.0 ≤ ϕ ≤ 0.04), the Darcy number, 10-5 ≤ Da ≤ 10-2 and the cylinder size, (0.15 ≤ R ≤ 0.25). The minimum heat transfer rate of the active surface were obtained at location ξ = 90°. In general, the ratio of the heat transfer per unit area of the heat source decreases as the length of the heated surface increases. The heat transfer rate is intensified for the half thermally active surface and high value of Darcy number at higher nanoparticles concentration.
Collapse
Affiliation(s)
- Abeer Alhashash
- Department of Mathematics, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.
| |
Collapse
|
8
|
Al-Weheibi SM, Rahman MM, Saghir MZ. Impacts of Variable Porosity and Variable Permeability on the Thermal Augmentation of Cu–H2O Nanofluid-Drenched Porous Trapezoidal Enclosure Considering Thermal Nonequilibrium Model. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04234-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.147] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids. ENERGIES 2019. [DOI: 10.3390/en12030541] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The free convection heat transfer of hybrid nanofluids in a cavity space composed of a clear flow, porous medium and a solid part is addressed. The cavity is heated from the bottom and cooled from the top. The side walls are well insulated. The upper part of the cavity is a clear space with no porous or solid materials and is filled with hybrid nanofluid. The bottom part is divided into two parts of a porous space saturated with the hybrid nanofluid and a solid thermal conductive block. There are conjugate heat transfer mechanisms between the solid block and the porous medium filled with the hybrid nanofluid as well as the hybrid nanofluid in the clear space. For the porous medium model, the local thermal non-equilibrium effects are considered. The hybrid nanofluids contain copper (20 nm) and alumina nanoparticles (40 nm) hybrid nanoparticles. The governing equations for the flow and heat transfer of the hybrid nanofluid in the clear space and the porous medium are introduced. Considering the conjugate heat transfer between the solid block and the hybrid nanofluid fluid in the pores and the porous matrix, appropriate boundary conditions for heat channeling are utilized. The governing equations are transformed into non-dimensional form to generalize the model. The finite element method is employed to solve the equations. The grid check and validation procedure are performed. Subsequently streamlines, isotherms, and Nusselt number are studied as important aspects of flow and heat transfer in the cavity. The increase in the portion of the clear flow part in the cavity enhances heat transfer due to better hybrid nanofluid circulation.
Collapse
|
11
|
Hashemi H, Namazian Z, Zadeh SMH, Mehryan S. MHD natural convection of a micropolar nanofluid flowing inside a radiative porous medium under LTNE condition with an elliptical heat source. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Mehryan S, Izadi M, Chamkha AJ, Sheremet MA. Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.119] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Natural convection of CuO-water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Izadi M, Hoghoughi G, Mohebbi R, Sheremet M. Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.063] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Effect of geometrical parameters on natural convection in a porous undulant-wall enclosure saturated by a nanofluid using Buongiorno's model. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.145] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|