1
|
Mvala B, Munonde TS, Mpupa A, Bambo MF, Matabola KP, Nomngongo PN. Valorization and Upcycling of Acid Mine Drainage and Plastic Waste via the Preparation of Magnetic Sorbents for Adsorption of Emerging Contaminants. ACS OMEGA 2024; 9:34700-34718. [PMID: 39157114 PMCID: PMC11325435 DOI: 10.1021/acsomega.4c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Plastic waste poses a serious environmental risk, but it can be recycled to produce a variety of nanomaterials for water treatment. In this study, poly(ethylene terephthalate) (PET) waste and acid mine drainage were used in the preparation of magnetic mesoporous carbon (MMC) nanocomposites for the adsorptive removal of pharmaceuticals and personal care products (PPCPs) from water samples. The latter were then characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and ζ potential. The results of Brunauer-Emmett-Teller isotherms revealed high specific surface areas of 404, 664, and 936 m2/g with corresponding pore sizes 2.51, 2.28, and 2.26 nm for MMC, MMAC-25%, and MMAC-50% adsorbents, respectively. Under optimized conditions, the equilibrium studies were best described by the Langmuir and Freundlich models and kinetics by the pseudo-second-order model. The maximum adsorption capacity for monolayer adsorption from the Langmuir model was 112, 102, and 106 mg/g for acetaminophen, caffeine, and carbamazepine, respectively. The composites could be reused for up to six cycles without losing their adsorption efficiency. Furthermore, prepared adsorbents were used to remove acetaminophen, caffeine, and carbamazepine from wastewater samples, and up to a 95% removal efficiency was attained.
Collapse
Affiliation(s)
- Bongiwe
Apatia Mvala
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| | - Tshimangadzo S. Munonde
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering
and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Anele Mpupa
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mokae Fanuel Bambo
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
| | - Kgabo Phillemon Matabola
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
- Department
of Water and Sanitation, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
| | - Philiswa Nosizo Nomngongo
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
2
|
Wang B, Lan J, Bo C, Gong B, Ou J. Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv 2023; 13:4275-4302. [PMID: 36760304 PMCID: PMC9891085 DOI: 10.1039/d2ra07911a] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the rapid development of the social economy and the massive increase in population, human beings continue to undertake processing, and commercial manufacturing activities of heavy metals, which has caused serious damage to the environment and human health. Heavy metals lead to serious environmental problems such as soil contamination and water pollution. Human health and the living environment are closely affected by the handling of heavy metals. Researchers must find several simple, economical and practical methods to adsorb heavy metals. Adsorption technology has been recognized as an efficient and economic strategy, exhibiting the advantages of recovering and reusing adsorbents. Biomass-derived activated carbon adsorbents offer large adjustable specific surface area, hierarchically porous structure, strong adsorption capacity, and excellent high economic applicability. This paper focuses on reviewing the preparation methods of biomass-derived activated carbon in the past five years. The application of representative biomass-derived activated carbon in the adsorption of heavy metals preferentially was described to optimize the critical parameters of the activation type of samples and process conditions. The key factors of the adsorbent, the physicochemical properties of the heavy metals, and the adsorption conditions affecting the adsorption of heavy metals are highlighted. In addition, the challenges faced by biomass-derived activated carbon are also discussed.
Collapse
Affiliation(s)
- Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Study of the Effectiveness of Alumina and HDTMA/Alumina Composite in the Removal of Para-Nitrophenol and the Deactivation of Bacterial Effect of Listeria monocytogenes and Salmonella spp. Life (Basel) 2022; 12:life12111700. [DOI: 10.3390/life12111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Removal of para-nitrophenol (p-NP) from an aqueous solution was studied under various batch adsorption experiments, using alumina (Al2O3) and its composite hexadecyltrimethylammonium bromide (HDTMA+-Br−) as adsorbents. These were later characterized, before and after adsorption of p-NP, by thermal analysis (DSC-TG), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV/Visible spectroscopies. The results show that HDTMA+/Al2O3 adsorbents have a greater affinity toward p-NP than Al2O3 alone. Linear and non-linear forms of kinetics and isotherms were used to analyze the experimental data obtained at different concentrations and temperatures. The results indicate that the pseudo-second order kinetic model provided the best fit to the experimental data for the adsorption of p-NP on both adsorbents, and that the intra-particle diffusion was not only the rate controlling step. Both the Langmuir and Redlich-Peterson (R-P) models were found to fit the sorption isotherm data well, but the Langmuir model was better. Physical adsorption of p-NP onto the adsorbents proved to be an endothermic and spontaneous process at high temperatures, which mainly involves a hydrogen bonding mechanism of interactions between p-NP and functional groups of adsorbents. The antibacterial activity of Al2O3, HDTMA+-Br− and HDTMA+/Al2O3 were evaluated against Listeria monocytogenes and Salmonella spp. strains using both disc diffusion and broth microdilution methods. The HDTMA+-Br− and HDTMA+/Al2O3 displayed a bacteriostatic effect against all tested strains of Listeria monocytogenes and Salmonella spp., while Al2O3 exhibited no bacterial effect against all bacterial strains tested.
Collapse
|
4
|
Selmi T, Enaime G, Kesraoui A, Baçaoui A, Seffen M. Dye removal by activated carbon produced from Agave americana fibers: stochastic isotherm and fractal kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46580-46591. [PMID: 32929673 DOI: 10.1007/s11356-020-10768-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The present work investigates the use of Agave americana fibers (AGF) as a precursor for activated carbon (AC) preparation via chemical activation using phosphoric acid (H3PO4), and the study of the influence of the preparation conditions on the adsorption capacity of the prepared AC toward Alpacide Yellow (AY). The preparation experiments have been conducted at different impregnation ratios: acid/AGF (20 g/1 g, 30 g/1 g, and 40 g/1 g) with varied impregnation times (2 h, 4 h, and 6 h) and at different carbonization temperatures (200 °C, 400 °C, and 600 °C). The impregnation ratio of 40 g/1 g, the impregnation time of 6 h, and the carbonization temperature of 400 °C were selected as the optimal conditions for the preparation of AC with enhanced properties. Despite its low specific surface area (25 m2/g), the prepared AC showed a higher adsorption capacity toward AY (5.71 mg/g) as compared with that of the commercial activated carbon (CC) (5.27 mg/g) which showed a higher specific surface area (825 m2/g). This could be due to the existence of pores and functional groups on the surface of AC, as evidenced by the analysis results of FTIR, DSC, and SEM. The adsorption process was found fast and fractal since it followed the kinetic model of the Brouers-Sotolongo fractal (BSf) (R2 = 0.999), while the mathematical modeling of the adsorption isotherm of AY on the synthesized AC was stochastic since it followed the General Brouers-Sotolongo (GBS) (R2 = 0.999).
Collapse
Affiliation(s)
- Taher Selmi
- Laboratory of Energy and Materials (LabEM), Higher School of Sciences and Technology of Hammam Sousse, Sousse University, BP 4011, Hammam Sousse, Tunisia.
| | - Ghizlane Enaime
- Laboratory of Applied Chemistry (LCA), Faculty of Sciences Semlalia, Cadi Ayyad University, B. P. 2390, Marrakech, Morocco
| | - Aïda Kesraoui
- Laboratory of Energy and Materials (LabEM), Higher School of Sciences and Technology of Hammam Sousse, Sousse University, BP 4011, Hammam Sousse, Tunisia
| | - Abdelaziz Baçaoui
- Laboratory of Applied Chemistry (LCA), Faculty of Sciences Semlalia, Cadi Ayyad University, B. P. 2390, Marrakech, Morocco
| | - Mongi Seffen
- Laboratory of Energy and Materials (LabEM), Higher School of Sciences and Technology of Hammam Sousse, Sousse University, BP 4011, Hammam Sousse, Tunisia
| |
Collapse
|
5
|
Messaoudi M, Tijani N, Baya S, Lahnafi A, Ouallal H, Moussout H, Messaoudi L. Characterization of ceramic pieces shaped from clay intended for the development of filtration membranes. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Chen J, Li X, Kong B, Ma J, Liu M, Liu C, Liu Q. How to Efficiently Remove
tert
‐butylhydroquinone from Commercial Soybean Oils to Obtain Stripped Oils: Eliminating
tert
‐butylhydroquinone's Influence on Oxidative Stabilities of Model Oil‐in‐Water Emulsions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jiaxin Chen
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Xin Li
- Sharable Platform of Large‐Scale Instruments & Equipments Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Baohua Kong
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Jinglin Ma
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Meiyue Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Chengguo Liu
- Sharable Platform of Large‐Scale Instruments & Equipments Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Qian Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
- Heilongjiang Green Food Science & Research Institute Harbin Heilongjiang 150028 China
| |
Collapse
|
7
|
Mallakpour S, Sirous F, Hussain CM. Green synthesis of nano-Al 2O 3, recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: various technological applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj05578f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmentally friendly fabrication of nano-Al2O3, recent functionalization, and preparation of polymer nanocomposites including natural and man-made polymers with various industrial applications are reviewed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
8
|
Martins JT, Guimarães CH, Silva PM, Oliveira RL, Prediger P. Enhanced removal of basic dye using carbon nitride/graphene oxide nanocomposites as adsorbents: high performance, recycling, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3386-3405. [PMID: 32918265 DOI: 10.1007/s11356-020-10779-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The presence of dyes in wastewater streams poses a great challenge for sustainability and brings the need to develop technologies to treat effluent streams. Here, we propose a mixture of high superficial area carbon-based nanomaterial strategy to improve the removal of basic blue 26 (BB26) by blending porous carbon nitride (CN) and graphene oxide (GO). We prepared CN and GO pristine materials, as well the nanocomposites with mass/ratio 30/70, 50/50, and 70/30, and applied them into BB26 uptake. Nanocomposite 50/50 CN/GO was found to be the better adsorbent, and the optimization of the adsorption revealed a fast equilibrium time of 30 min, after sonication for 2 min, nanocomposite 50/50, and BB26 dye loading of 0.1 g/L and 100 mg/L, respectively. The pH variation had great influence on BB26 uptake, and at ultrapure water pH, the dye removal capacity by the composite reached 917.78 mg/g. At pH 2, a remarkable removal efficiency of 3510.10 mg/g was obtained, probably due to electrostatic interactions among protonated amine groups of the dye and negatively charged CN/GO nanocomposite. The results obtained were best fitted to the pseudo-second-order kinetic model and the Dubinin-Radushkevich isotherm. The adsorption process was thermodynamically spontaneous, and physisorption was the main mechanism, which is based on weak electrostatic and π-π interactions. The dye attached to the CN/GO nanocomposite could be removed by washing with ethyl alcohol, and the adsorbent was reused for five consecutive cycles with high BB26 uptake efficiency. The CN/GO nanocomposite ability to remove the BB26 dye was 21 times higher than those reported in the literature, indicating CN/GO composites as potential filtering materials to basic dyes.
Collapse
Affiliation(s)
- Junia Teixeira Martins
- School of Technology, University of Campinas - Unicamp, Limeira, CEP, São Paulo, 13484-332, Brazil
| | | | - Paula Mayara Silva
- School of Technology, University of Campinas - Unicamp, Limeira, CEP, São Paulo, 13484-332, Brazil
| | - Rafael L Oliveira
- Fakultät II, Institut für Chemie: Funktionsmaterialien, Sekretariat BA2, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Patricia Prediger
- School of Technology, University of Campinas - Unicamp, Limeira, CEP, São Paulo, 13484-332, Brazil.
| |
Collapse
|
9
|
Enhanced Adsorptive Removal of β-Estradiol from Aqueous and Wastewater Samples by Magnetic Nano-Akaganeite: Adsorption Isotherms, Kinetics, and Mechanism. Processes (Basel) 2020. [DOI: 10.3390/pr8091197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A surfactant-free method was used to synthesize iron oxyhydroxide (akaganeite, β-FeOOH) nanorods and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM). The synthesized nanoadsorbent was applied for the adsorptive removal of β-estradiol from aqueous solutions. The parameters affecting the adsorption were optimized using a multivariate approach based on the Box–Behnken design with the desirability function. Under the optimum conditions, the equilibrium data were investigated using two and three parameter isotherms, such as the Langmuir, Freundlich, Dubinin–Radushkevich, Redlich–Peterson, and Sips models. The adsorption data were described as Langmuir and Sips isotherm models and the maximum adsorption capacities in Langmuir and Sips of the β-FeOOH nanorods were 97.0 and 103 mg g−1, respectively. The adjusted non-linear adsorption capacities were 102 and 104 mg g−1 for Langmuir and Sips, respectively. The kinetics data were analyzed by five different kinetic models, such as the pseudo-first order, pseudo-second order, intraparticle, as well as Boyd and Elovich models. The method was applied for the removal β-estradiol in spiked recoveries of wastewater, river, and tap water samples, and the removal efficiency ranged from 93–100%. The adsorbent could be reused up to six times after regeneration with acetonitrile without an obvious loss in the removal efficiency (%RE = 95.4 ± 1.9%). Based on the results obtained, it was concluded that the β-FeOOH nanorods proved to be suitable for the efficient removal of β-estradiol from environmental matrices.
Collapse
|
10
|
Amiri S, Reza Sohrabi M, Motiee F. Optimization Removal of the Ceftriaxone Drug from Aqueous Media with Novel Zero‐Valent Iron Supported on Doped Strontium Hexaferrite Nanoparticles by Response Surface Methodology. ChemistrySelect 2020. [DOI: 10.1002/slct.202000285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shadan Amiri
- Department of ChemistryIslamic Azad University, North Tehran Branch Tehran Iran
| | | | - Fereshteh Motiee
- Department of ChemistryIslamic Azad University, North Tehran Branch Tehran Iran
| |
Collapse
|
11
|
Adsorption of Crystal Violet onto an Agricultural Waste Residue: Kinetics, Isotherm, Thermodynamics, and Mechanism of Adsorption. ScientificWorldJournal 2020; 2020:5873521. [PMID: 32410908 PMCID: PMC7211253 DOI: 10.1155/2020/5873521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/18/2020] [Accepted: 04/04/2020] [Indexed: 11/17/2022] Open
Abstract
Agricultural waste can be exploited for the adsorption of dyes, due to their low cost, availability, cost-effectiveness, and efficiency. In this study, we were interested in the elimination of crystal violet dye, from aqueous solutions, by adsorption on almond shell-based material, as a low-cost and ecofriendly adsorbent. The almond shells were first analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction; then, the influence of adsorbent dose, initial dye concentration time, and pH were studied to assess adsorption capacity under optimal experimental conditions. Experimental results indicate that almond shell adsorbent removes about 83% of the dye from the solutions at room temperature and in batch mode; the kinetic study showed that the equilibrium time is about 90 min, and the model of pseudo-second order could very well describe adsorption kinetics. The modulation of adsorption isotherms showed that retention follows the Langmuir model. The thermodynamic study has shown that the adsorption is endothermic (ΔH° > 0) and spontaneous (ΔG° < 0).
Collapse
|
12
|
Long X, Chen R, Tan J, Lu Y, Wang J, Huang T, Lei Q. Electrochemical recovery of cobalt using nanoparticles film of copper hexacyanoferrates from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121252. [PMID: 31581010 DOI: 10.1016/j.jhazmat.2019.121252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticles film of copper metal hexacyanoferrates (CuHCF) was fabricated to electrochemically separate Co2+ in aqueous solutions under various conditions such as applied potential, solution pHs, initial concentrations, contact time and coexisting ions. Results showed that the removal efficiency conducted in reduction potential was obviously higher than that in oxidation potential. The optimal pH for Co2+ adsorption occurred at 8.0. Coexisting ions studies revealed that Co2+ could be removed from aqueous solutions containing Li+, Cu2+ and Al3+. Considering that cobalt and lithium are the main metallic elements in LiCoO2, the effect of different ionic strengths (IS) of LiNO3 (0.5, 1, 2, 5, 10) on adsorption was further investigated. Results showed that IS of LiNO3 had little impact on the removal efficiency of Co2+, which indicated the potential of selective recovery of cobalt from LiCoO2 in spent lithium-ion batteries. X-ray energy-dispersion spectroscopy (EDS) confirmed that the Co2+ could be adsorbed effectively onto CuHCF film. The adsorption was well described by Langmuir isotherm and the maximum sorption capacity is 218.82 mg/g. The kinetic rate of Co2+ adsorption was rapid initially and attained equilibrium within 60 min, and the data well fitted the Redlich-Peterson and the Elovich model, implying a chemisorption dominated process.
Collapse
Affiliation(s)
- Xinxin Long
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
| | - Jihua Tan
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
| | - Yifeng Lu
- School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, China
| | - Jixiang Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Tijun Huang
- School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, China
| | - Qin Lei
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| |
Collapse
|
13
|
Zheng L, Yang Y, Meng P, Peng D. Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis. Carbohydr Polym 2019; 209:38-50. [DOI: 10.1016/j.carbpol.2019.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
|