1
|
Synergistic and antagonistic effects in micellization of mixed surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Wu P, Xue T, Liu G, Li X, Peng Z, Zhou Q, Qi T. Interfacial behavior and micellization of binary surfactant mixtures in the concentrated sodium aluminate solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Su L, Sun J, Ding F, Gao X, Zheng L. Effect of molecular structure on synergism in mixed zwitterionic/anionic surfactant system: An experimental and simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Madhumanchi S, Suedee R, Kaewpiboon S, Srichana T, Khalil R, Ul-Haq Z. Effect of sodium deoxycholate sulfate on outer membrane permeability and neutralization of bacterial lipopolysaccharides by polymyxin B formulations. Int J Pharm 2020; 581:119265. [PMID: 32217155 DOI: 10.1016/j.ijpharm.2020.119265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
We demonstrated binding interactions of polymyxin B (PMB), PMB formulations in the mole ratios of 1:2 and 1:3 of PMB:sodium deoxycholate sulfate (SDCS) and a commercial PMB formulation (CPMB) with lipopolysaccharides (LPS). The 1:2 PMB formulation (78.5-135.2 nM) exhibited a lower number of binding sites to the tested LPS compared to CPMB (112.6-140.9 nM) whereas 1:3 PMB formulation exhibited a higher number of binding sites (143.9-340.2 nM). Similarly, in the presence of LPS, the 1:2 PMB formulation (163.8-221.4 nm) exhibited smaller particle sizes compared to PMB, CPMB and 1:3 PMB formulation (248.8-603.5 nm). Molecular docking simulation suggested that the fatty acyl tails of LPS wrap together to produce a pseudo-globular structure of PMB-LPS complex, and among those 1:2 PMB formulation formed a more stable structure. The primary forces behind this complex are hydrogen bonds and salt bridges among the LPS, PMB, and SDCS. This study revealed that the PMB, CPMB, and PMB formulations inserted into the LPS micelles to disrupt the LPS membrane, whereas the SDCS may induce aggregation. The 1:2 PMB formulation also had higher bacterial uptake than other PMB formulations. The 1:2 PMB formulation neutralized the LPS micelles and was effective against Escherichia coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Sreenu Madhumanchi
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sunisa Kaewpiboon
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Ruqaiya Khalil
- Computational Drug Design Lab, Dr. Panjwani Center for Molecular Medicine and Drug, Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Computational Drug Design Lab, Dr. Panjwani Center for Molecular Medicine and Drug, Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
5
|
Wu J, Hu X, Liu R, Zhang J, Song A, Luan Y. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J Colloid Interface Sci 2019; 547:30-39. [DOI: 10.1016/j.jcis.2019.03.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|