1
|
Ray J, Tripathy T. Dextrin‐graft‐
poly
(2‐dimethylamino ethyl acrylate‐
co
‐2‐acrylamido‐2‐methyl propane sulfonic acid) polymer: A potential adsorbent for the fast removal of nitrophenols from aqueous medium. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jagabandhu Ray
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| |
Collapse
|
2
|
Salami BA, Oyehan TA, Gambo Y, Badmus SO, Tanimu G, Adamu S, Lateef SA, Saleh TA. Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42560-42600. [PMID: 35380322 DOI: 10.1007/s11356-022-19793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Water and wastewater treatment applications stand to benefit immensely from the design and development of new materials based on silica nanoparticles and their derivatives. Nanosilica possesses unique properties, including low toxicity, chemical inertness, and excellent biocompatibility, and can be developed from a variety of sustainable precursor materials. Herein, we provide an account of the recent advances in the synthesis and utilization of nanosilica for wastewater treatment. This review covers key physicochemical aspects of several nanosilica materials and a variety of nanotechnology-enabled wastewater treatment techniques such as adsorption, separation membranes, and antimicrobial applications. It also discusses the prospective design and tuning options for nanosilica production, such as size control, morphological tuning, and surface functionalization. Informative discussions on nanosilica production from agricultural wastes have been offered, with a focus on the synthesis methodologies and pretreatment requirements for biomass precursors. The characterization of the different physicochemical features of nanosilica materials using critical surface analysis methods is discussed. Bio-hybrid nanosilica materials have also been highlighted to emphasize the critical relevance of environmental sustainability in wastewater treatment. To guarantee the thoroughness of the review, insights into nanosilica regeneration and reuse are provided. Overall, it is envisaged that this work's insights and views will inspire unique and efficient nanosilica material design and development with robust properties for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Babatunde Abiodun Salami
- Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Tajudeen Adeyinka Oyehan
- Geosciences Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Yahya Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gazali Tanimu
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Sagir Adamu
- Chemical Engineering Department and Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saheed A Lateef
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
3
|
Samanta SK, Mandal B, Tripathy T. Sodium alginate‐cl‐poly (N,N‐dimethyl acryl amide‐co‐2‐acrylamino‐2‐methyl‐1‐propane sulphonic acid)/titanium dioxide nanocomposite hydrogel: An efficient dye‐removing agent. J Appl Polym Sci 2022. [DOI: 10.1002/app.52465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Santu Kumar Samanta
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| | - Barun Mandal
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore West Bengal India
| |
Collapse
|
4
|
Clarissa WHY, Chia CH, Zakaria S, Evyan YCY. Recent advancement in 3-D printing: nanocomposites with added functionality. PROGRESS IN ADDITIVE MANUFACTURING 2021; 7:325-350. [PMID: 38624631 PMCID: PMC8556779 DOI: 10.1007/s40964-021-00232-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/17/2021] [Indexed: 05/05/2023]
Abstract
Three-Dimentional (3-D) printing is currently a popular printing technique that is used in many sectors. Potentially, this technology is expected to replace conventional manufacturing in the coming years. It is accelerating in gaining attention due to its design freedom where objects can be produced without imagination boundaries. The review presents a perspective on the application of 3-D printing application based on various fields. However, the ordinary 3-D printed products with a single type of raw often lack robustness leading to broken parts. Improving the mechanical property of a 3-D printed part is crucial for its applications in many fields. One of the promising solutions is to incorporate nanoparticles or fillers into the raw material. The review aims to provide information about the types of additive manufacturing. There are few types of raw materials can be used as foundation template in the printing, enhanced properties of the printed polymer nanocomposites with different types of nanoparticles as additives in the printing. The article reviews the advantages and disadvantages of different materials that are used as raw materials or base materials in 3-D printing. This can be a guideline for the readers to compare and analyse the raw materials prior to a decision on the type of material to be selected. The review prepares an overview for the researchers to choose the types of nanoparticles to be added in the printing of the products depending on the targeted application. With the added functionality of the 3-D polymer nanocomposites, it will help in widespread of the application of 3-D printing technology in various sector.
Collapse
Affiliation(s)
- Wu Hui-Yan Clarissa
- Faculty of Engineering, Science and Technology, Nilai University, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chin Hua Chia
- Bioresource & Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Sarani Zakaria
- Bioresource & Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Yang Chia-Yan Evyan
- Faculty of Engineering, Science and Technology, Nilai University, 71800 Nilai, Negeri Sembilan Malaysia
| |
Collapse
|
5
|
Ray J, Samanta SK, Tripathy T. Adsorption of toxic organophosphorus pesticides from aqueous medium using dextrin‐graft‐
poly
(2‐acrylamido‐2‐methyl propane sulfonic acid‐co‐acrylic acid) copolymer: Studies on equilibrium kinetics, isotherms, and thermodynamics of interactions. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jagabandhu Ray
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| | - Santu Kumar Samanta
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| |
Collapse
|
6
|
Li H, Wu S, Du C, Zhong Y, Yang C. Preparation, Performances, and Mechanisms of Microbial Flocculants for Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1360. [PMID: 32093205 PMCID: PMC7068532 DOI: 10.3390/ijerph17041360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
In recent years, close attention has been paid to microbial flocculants because of their advantages, including safety to humans, environmental friendliness, and acceptable removal performances. In this review, the preparation methods of microbial flocculants were first reviewed. Then, the performances of bioflocculants in the removal of suspended solids, heavy metals, and other organic pollutants from various types of wastewater were described and commented, and the removal mechanisms, including adsorption bridging, charge neutralization, chemical reactions, and charge neutrality, were also discussed. The future research needs on microbial flocculants were also proposed. This review would lead to a better understanding of current status, challenges, and corresponding strategies on microbial flocculants and bioflocculation in wastewater treatment.
Collapse
Affiliation(s)
- Huiru Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Cheng Du
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Yuanyuan Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
- Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha 410001, China
| |
Collapse
|
7
|
Mondal B, Banerjee S, Ray J, Jana S, Senapati S, Tripathy T. “Novel Dextrin‐Cysteine Schiff Base: A Highly Efficient Sensor for Mercury Ions in Aqueous Environment”. ChemistrySelect 2020. [DOI: 10.1002/slct.201904351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Barun Mondal
- Postgraduate Division of Chemistry Midnapore College (Autonomous), Midnapore, Paschim Medinipur 721101 West Bengal India
| | - Shankha Banerjee
- Department of Biotechnology BJM School of Bioscience, Indian Institute of Technology Madras Chennai 600036 India
| | - Jagabandhu Ray
- Postgraduate Division of Chemistry Midnapore College (Autonomous), Midnapore, Paschim Medinipur 721101 West Bengal India
| | - Subinoy Jana
- Postgraduate Division of Chemistry Midnapore College (Autonomous), Midnapore, Paschim Medinipur 721101 West Bengal India
| | - Sanjib Senapati
- Department of Biotechnology BJM School of Bioscience, Indian Institute of Technology Madras Chennai 600036 India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry Midnapore College (Autonomous), Midnapore, Paschim Medinipur 721101 West Bengal India
| |
Collapse
|
8
|
Comparison of adsorption properties for anionic dye by metal organic frameworks with different metal ions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Mondal B, Bhanja SK, Tripathy T. Simultaneous Electrochemical Sensing of
p
‐Aminophenol and Hydroquinone by Using Grafted
Tricholoma
Mushroom Polysaccharide/Gold Composite Nanoparticles in Aqueous Media. ChemistrySelect 2019. [DOI: 10.1002/slct.201901772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Barun Mondal
- Postgraduate Division of ChemistryMidnapore College (Autonomous), Midnapore, Paschim Medinipur 721101, West Bengal India
| | - Sunil K. Bhanja
- Department of chemistryGovernment General Degree College, Kharagpur-II, Paschim Medinipur 721149, West Bengal India
| | - Tridib Tripathy
- Postgraduate Division of ChemistryMidnapore College (Autonomous), Midnapore, Paschim Medinipur 721101, West Bengal India
| |
Collapse
|