1
|
Choque-Quispe Y, Choque-Quispe D, Ligarda-Samanez CA, Solano-Reynoso AM, Froehner S, Ramos-Pacheco BS, Carhuarupay-Molleda YF, Sumarriva-Bustinza LA. A High Andean Hydrocolloid Extracted by Microatomization: Preliminary Optimization in Aqueous Stability. Polymers (Basel) 2024; 16:1777. [PMID: 39000633 PMCID: PMC11244426 DOI: 10.3390/polym16131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Aqueous suspensions rely on electrostatic interactions among suspended solids, posing a significant challenge to maintaining stability during storage, particularly in the food and pharmaceutical industries, where synthetic stabilizers are commonly employed. However, there is a growing interest in exploring new materials derived from natural and environmentally friendly sources. This study aimed to optimize the stability parameters of a novel Altoandino Nostoc Sphaericum hydrocolloid (NSH) extracted via micro atomization. Suspensions were prepared by varying the pH, gelatinization temperature and NSH dosage using a 23 factorial arrangement, resulting in eight treatments stored under non-controlled conditions for 20 days. Stability was assessed through turbidity, sedimentation (as sediment transmittance), ζ potential, particle size, color and UV-Vis scanning. Optimization of parameters was conducted using empirical equations, with evaluation based on the correlation coefficient (R2), average relative error (ARE) and X2. The suspensions exhibited high stability throughout the storage period, with optimized control parameters identified at a pH of 4.5, gelatinization temperature of 84.55 °C and NSH dosage of 0.08 g/L. Simulated values included turbidity (99.00%), sedimentation (72.34%), ζ potential (-25.64 mV), particle size (300.00 nm) and color index (-2.00), with simulated results aligning with practical application. These findings suggest the potential use of NSH as a substitute for commercial hydrocolloids, albeit with consideration for color limitations that require further investigation.
Collapse
Affiliation(s)
- Yudith Choque-Quispe
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.F.C.-M.)
| | - Sandro Froehner
- Department of Environmental Engineering, Federal University of Parana, Curitiba 80010, Brazil;
| | - Betsy S. Ramos-Pacheco
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | | | - Liliana Asunción Sumarriva-Bustinza
- Academic Department of Chemistry, Faculty of Science, Universidad Nacional de Educación Enrique Guzman y Valle, Lurigancho-Chosica 15472, Peru;
| |
Collapse
|
2
|
Zhou S, Ai J, Qiao J, Sun H, Jiang Y, Yin X. Effects of neonicotinoid insecticides on transport of non-degradable agricultural film microplastics. WATER RESEARCH 2023; 236:119939. [PMID: 37054611 DOI: 10.1016/j.watres.2023.119939] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Mulch film microplastics (MPs) could act as a vector for agricultural chemicals due to their long-term presence in farmland environments. As a result, this study focuses on the adsorption mechanism of three neonicotinoids on two typical agricultural film MPs, polyethylene (PE) and polypropylene (PP), as well as the effects of neonicotinoids on the MPs transport in quartz sand saturated porous media. The findings revealed that the adsorption of neonicotinoids on PE and PP was a combination of physical and chemical processes, including hydrophobic, electrostatic and hydrogen bonding. Acidity and appropriate ionic strength (IS) were favorable conditions for neonicotinoid adsorption of on MPs. The results of column experiments showed that the presence of neonicotinoids, particularly at low concentrations (0.5 mmol L-1), could promote the transport of PE and PP in the column by improving the electrostatic interaction and hydrophilic repulsion of particles. The neonicotinoids would be adsorbed on MPs through hydrophobic action preferentially, whereas excessive neonicotinoids could cover the hydrophilic functional groups on the surface of MPs. Neonicotinoids reduced the response of PE and PP transport behavior to pH changes. 0.005 mol L-1 NaCl ameliorated the migration of MPs by increasing their stability. Because of its highest hydration ability and the bridging effect of Mg2+, Na+ had the most prominent transport promoting effect on PE and PP in MPs-neonicotinoid. This study shows that the increased environmental risk caused by the coexistence of microplastic particles and agricultural chemicals is unneglectable.
Collapse
Affiliation(s)
- Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Juehao Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiachang Qiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Yanji Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Obstbaum T, Sivan U. Charge regulation indicates water expulsion from silica surface by cesium cations. J Colloid Interface Sci 2023; 638:825-833. [PMID: 36791480 DOI: 10.1016/j.jcis.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS Since the discovery of the Hofmeister effect in 1888, the varied propensity of ions to proteins, DNA and other surfaces has motivated research aimed at deciphering the underlying ion specific adsorption mechanism. Experimental and numerical studies have shown that in agreement with Collins' heuristic law of matching water affinity, weakly hydrated (chaotropic) ions adsorb preferentially to hydrophobic surfaces. Here, we show that this preference is driven by expulsion of bound water molecules from the surface by the adsorbing ions. EXPERIMENTS Using AFM spectroscopy of the force acting between two silica surfaces, we characterize surface charge regulation by adsorbed Na+ and Cs+ ions at different salt concentrations, pH values and temperatures. These data are analyzed in the framework of a recent theory of charge regulation, relating it to change in surface entropy. FINDINGS Upon binding to the silica, cesium cations expel water molecules from the surface to create additional adsorption sites for more ions. Cs+ adsorption is thus driven by the release of hydrating water molecules and the resulting increased surface entropy. The model indicates that on average, the binding of three cesium cations releases enough water molecules to make room for two additional bound cations. Na+ does not exhibit such behavior.
Collapse
Affiliation(s)
- Tal Obstbaum
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
4
|
Devi M, Paul S. The chaotropic effect of ions on the self-aggregating propensity of Whitlock's molecular tweezers. Phys Chem Chem Phys 2022; 24:14452-14471. [PMID: 35661176 DOI: 10.1039/d2cp00033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular tweezers feature the first class of artificial receptors to pique the interest of researchers and emerge as an effective therapeutic candidate. The exceptional structure and exquisite binding specificity of tweezers establish this overall class of receptors as a promising tool, with abundant applications. However, their inclination to self-aggregate by mutual π-π stacking interactions of their aromatic arms diminishes their efficacy as a therapeutic candidate. Therefore, following up on sporadic studies, since the discovery of the Hofmeister series, on the ability of ions to either solvate (salting-in) or induce aggregation (salting-out) of hydrophobic solutes, the notions of ion-specificity effects are utilized on tweezer moieties. The impacts of three different aluminum salts bearing anions Cl-, ClO4- and SCN- on the self-association propensity of Whitlock's caffeine-pincered molecular tweezers are investigated, with a specific emphasis placed on elucidating the varied behavior of the ions on the hydration ability of tweezers. The comparative investigation is conducted employing a series of all-atom molecular dynamics simulations of five tweezer molecules in pure water and three salt solutions, at two different concentrations each, maintaining a temperature of 300 K and a pressure of 1 atm, respectively. Radial distribution functions, coordination numbers, and SASA calculations display a steady reduction in the aggregation proclivity of the receptor molecules with an increase in salt concentration, as progressed along the Hofmeister series. Orientational preferences between the tweezer arms reveal a disruptive effect in the regular π-π stacking interactions, in the presence of high concentrations of ClO4- and SCN- ions, while preferential interactions and tetrahedral order parameters unveil the underlying mechanism, by which the anions alter the solubility of the hydrophobic molecules. Overall, it is observed that SCN- exhibits the highest salting-in effect, followed by ClO4-, with both anions inhibiting tweezer aggregation through different mechanisms. ClO4- ions impart an effect by moderately interacting with the solute molecules as well as modifying the water structure of the bulk solution promoting solvation, whereas, SCN- ions engage entirely in interaction with specific tweezer sites. Cl- being the most charge-dense of the three anionic species experiences stronger hydration and therefore, imparts a very negligible salting-in effect.
Collapse
Affiliation(s)
- Madhusmita Devi
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| |
Collapse
|