1
|
Rios TB, Rezende SB, Maximiano MR, Cardoso MH, Malmsten M, de la Fuente-Nunez C, Franco OL. Computational Approaches for Antimicrobial Peptide Delivery. Bioconjug Chem 2024; 35:1873-1882. [PMID: 39541149 DOI: 10.1021/acs.bioconjchem.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides constitute alternative molecules for the treatment of infections caused by bacteria, viruses, fungi, and protozoa. However, their therapeutic effectiveness is often limited by enzymatic degradation, chemical and physical instability, and toxicity toward healthy human cells. To improve their pharmacokinetic (PK) and pharmacodynamic (PD) profiles, novel routes of administration are being explored. Among these, nanoparticles have shown promise as potential carriers for peptides, although the design of delivery vehicles remains a slow and painstaking process, heavily reliant on trial and error. Recently, computational approaches have been introduced to accelerate the development of effective drug delivery systems for peptides. Here we present an overview of some of these computational strategies and discuss their potential to optimize drug development and delivery.
Collapse
Affiliation(s)
- Thuanny Borba Rios
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Samilla Beatriz Rezende
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| |
Collapse
|
2
|
X de Andrade D, Colherinhas G. Polar Zipper on a Peptide Nanomembrane: A Characterization by Potential of Mean Force. J Phys Chem B 2023; 127:228-235. [PMID: 36548131 DOI: 10.1021/acs.jpcb.2c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, nanomembranes formed by the I3XGK (X = Q, S, or N) polar peptides are studied to characterize the average force and energy required to separate two neighboring β-sheets laterally joined by polar zippers. The results presented are obtained using a methodology (state of the art) involving the pulling umbrella method to generate the samples (umbrella sampling) and the potential of mean force (PMF) to evaluate the energetic variation evolved in the process of separating the polar zipper. It was observed that the maximum force required to separate the regions linked by polar zippers is 1.48 kJ/mol nm for the I3NGK nanomembrane and 1.22 kJ/mol nm [1.30 kJ/mol nm] for the I3QGK [I3SGK] nanomembranes, emphasizing that polar zippers play an important role in the interaction that interconnects β-sheets in broad and robust two-dimensional structures (tapes and membranes), offering an agile route to the construction of distinct nanomaterials from β-sheets. Also, negative values were obtained for energy as a function of the reaction coordinate for the regions where the formation of polar zippers occurs, showing that the lateral union of neighboring β-sheets is energetically favorable, with a value up to -3.0 kJ/mol, in the case of I3NGK nanomembranes.
Collapse
Affiliation(s)
- Douglas X de Andrade
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Aparecida de Goiânia, GO74968-755, Brazil
| | | |
Collapse
|
3
|
Chen X, Wu X, Wang S. An optimized antimicrobial peptide analog acts as an antibiotic adjuvant to reverse methicillin-resistant Staphylococcus aureus. NPJ Sci Food 2022; 6:57. [PMID: 36509755 PMCID: PMC9744894 DOI: 10.1038/s41538-022-00171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The misuse of antibiotics in animal protein production has driven the emergence of a range of drug-resistant pathogens, which threaten existing public health security. Consequently, there is an urgent need to develop novel antimicrobials and new infection treatment options to address the challenges posed by the dramatic spread of antibiotic resistance. Piscidins, a class of fish-specific antimicrobial peptides (AMPs), are regarded as promising therapies for biomedical applications. Progress towards potential analogs from the piscidin family has been hampered by unenforceable structural optimization strategies. Here, we leverage a strategy of bioinformatics analysis combined with molecular dynamics (MD) simulation to identify specific functional hotspots in piscidins and rationally design related analogues. As expected, this approach yields a potent and non-toxic PIS-A-1 that can be used as an antibiotic adjuvant to reverse methicillin-resistant Staphylococcus aureus (MRSA) pathogens. Remarkably, the structural optimization scheme and application strategy proposed here will contribute richer therapeutic options for the safe production of animal protein.
Collapse
Affiliation(s)
- Xuan Chen
- grid.411604.60000 0001 0130 6528College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108 China ,grid.411604.60000 0001 0130 6528College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Xiaoping Wu
- grid.411604.60000 0001 0130 6528College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108 China ,grid.411604.60000 0001 0130 6528College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Shaoyun Wang
- grid.411604.60000 0001 0130 6528College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 China
| |
Collapse
|
4
|
EF4K bola-amphiphilic peptide nanomembrane: structural, energetic and dynamic properties using molecular dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Mendanha K, Bruno Assis Oliveira L, Colherinhas G. Modeling, energetic and structural analysis of peptide membranes formed by arginine and phenylalanine (R2F4R2) using fully atomistic molecular dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Giulia Bordoni P, Colherinhas G. On the influence of increasing the concentration of Au144(SRCOO1-)60 nanoparticles in water/Na1+ solution using molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
de Almeida AR, de Andrade DX, Colherinhas G. Statistical and energetic analysis of hydrogen bonds in short and long peptide nanotapes/nanofibers using molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Domingos Alves E, de Andrade DX, de Almeida AR, Colherinhas G. Molecular dynamics study of hydrogen bond in peptide membrane at 150–300 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
de Andrade DX, Alves ED, de Almeida AR, Colherinhas G. Laminar peptide structure: Energetic and structural evaluation using molecular dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Mendanha K, Prado RC, Oliveira LB, Colherinhas G. TD-DFT absorption spectrum of (poly)threonine in water: A study combining molecular dynamics and quantum mechanics calculations. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Alves ED, de Andrade DX, de Almeida AR, Colherinhas G. Atomistic molecular dynamics study on the influence of high temperatures on the structure of peptide nanomembranes candidates for organic supercapacitor electrode. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Colherinhas G. Updating atomic charge parameters of aliphatic amino acids: a quest to improve the performance of molecular modeling via sequential molecular dynamics and DFT-GIAO-NMR calculations. Phys Chem Chem Phys 2021; 23:8413-8425. [PMID: 33876005 DOI: 10.1039/d1cp00183c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we observe the behavior of the dipole moment, atomic charges, solute-solvent interactions and NMR spectroscopy of aliphatic amino acids in a water solution via the computational simulations of classical molecular dynamics and DFT quantum calculations. Our results indicate that the convergence of the atomic charge of the solute, from an iterative process, together with the dipole moment of the amino acid, alters the lifetime of hydrogen bonds present in the first solvation shell, resulting in the modification of its structure and dynamics. Using GIAO-DFT-NMR calculations, we assessed the impact of these structural solute-solvent modifications on the magnetic shielding constants of the solute carbon atoms. In this sense, we evaluate the importance of an update in parameters that describe atomic charges present in the CHARMM36 force field.
Collapse
Affiliation(s)
- Guilherme Colherinhas
- Departamento de Física, CEPAE, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Mendanha K, Prado RC, Oliveira LBA, Colherinhas G. Molecular dynamic simulations, GIAO-NMR and TD-DFT spectroscopy analyze for zwitterionic isoleucine (ILE) N , 1 ≤ N ≤ 6, in water solution. J Comput Chem 2021; 42:344-357. [PMID: 33283895 DOI: 10.1002/jcc.26460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/01/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
In this article, we investigate the effects of the isoleucine (ILE)N amino acid chain growth, N = 1.0.6, the ILE conformational effect as well as the solvent presence on the electrical and magnetic spectroscopic properties when these compounds are in aqueous solution. Computational molecular dynamics simulations were performed to include the solvent medium and generate uncorrelated configurations involving solute-solvent structures. The charge point model for solvent was used to obtain the results for quantum mechanical calculation, in special DFT calculations, for (ILE)N structures. Our results for the magnetic shielding constant obtained via GIAO-DFT-NMR calculations show that there is evidence of a magnetic behavior that characterizes the number of peptide bonds and, therefore, how the N isoleucine polypeptide chain is composed. TD-DFT results also show an absorption band shift to larger wavelengths indicating a dependence on N growth.
Collapse
Affiliation(s)
- Karinna Mendanha
- Instituto de Física, Universidade Federal de Goiás, Goiás, Brazil
| | | | | | - Guilherme Colherinhas
- Instituto de Física, Universidade Federal de Goiás, Goiás, Brazil.,Departamento de Física, CEPAE, Universidade Federal de Goiás, Goiás, Brazil
| |
Collapse
|
14
|
Dilip H, Chakraborty D. Structural and dynamical properties of water in surfactant-like peptide-based nanotubes: Effect of pore size, tube length and charge. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Shariatinia Z. Molecular Dynamics Simulations on Drug Delivery Systems. MODELING AND CONTROL OF DRUG DELIVERY SYSTEMS 2021:153-182. [DOI: 10.1016/b978-0-12-821185-4.00013-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Update of CHARMM36's atomic charges for aromatic amino acids in water solution simulations and spectroscopy analysis via sequential molecular dynamics and DFT calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Andrade D, Colherinhas G. The influence of polar and non-polar interactions on the self-assembly of peptide nanomembranes and their applications: An atomistic study using classical molecular dynamics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
A6H polypeptide membranes: Molecular dynamics simulation, GIAO-DFT-NMR and TD-DFT spectroscopy analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
|