1
|
Elzupir A, Ibnaouf K. Synthesis of novel pyrrolidinyl chalcone derivatives: Spectral properties, energy band-gap tailoring, and amplified spontaneous emission. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
El-Shamy NT, Alkaoud AM, Hussein RK, Ibrahim MA, Alhamzani AG, Abou-Krisha MM. DFT, ADMET and Molecular Docking Investigations for the Antimicrobial Activity of 6,6'-Diamino-1,1',3,3'-tetramethyl-5,5'-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione]. Molecules 2022; 27:620. [PMID: 35163880 PMCID: PMC8839838 DOI: 10.3390/molecules27030620] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/24/2022] Open
Abstract
Heterocyclic compounds, including pyrimidine derivatives, exhibit a broad variety of biological and pharmacological activities. In this paper, a previously synthesized novel pyrimidine molecule is proposed, and its pharmaceutical properties are investigated. Computational techniques such as the density functional theory, ADMET evaluation, and molecular docking were applied to elucidate the chemical nature, drug likeness and antibacterial function of molecule. The viewpoint of quantum chemical computations revealed that the molecule was relatively stable and has a high electrophilic nature. The contour maps of HOMO-LUMO and molecular electrostatic potential were analyzed to illustrate the charge density distributions that could be associated with the biological activity. Natural bond orbital (NBO) analysis revealed details about the interaction between donor and acceptor within the bond. Drug likeness and ADMET analysis showed that the molecule possesses the agents of safety and the effective combination therapy as pharmaceutical drug. The antimicrobial activity was investigated using molecular docking. The investigated molecule demonstrated a high affinity for binding within the active sites of antibacterial and antimalarial proteins. The high affinity of the antibacterial protein was proved by its low binding energy (-7.97 kcal/mol) and a low inhibition constant value (1.43 µM). The formation of four conventional hydrogen bonds in ligand-protein interactions confirmed the high stability of the resulting complexes. When compared to known standard drugs, the studied molecule displayed a remarkable antimalarial activity, as indicated by higher binding affinity (B.E. -5.86 kcal/mol & Ki = 50.23 M). The pre-selected molecule could be presented as a promising drug candidate for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Nesreen T. El-Shamy
- Physics Department, Faculty of Science, Taibah University, Al-Madina Al Munawarah 44256, Saudi Arabia; or
- Physics Department, Faculty of Women, Ain Shams University, Cairo 11865, Egypt
| | - Ahmed M. Alkaoud
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.M.A.); (M.A.I.)
| | - Rageh K. Hussein
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.M.A.); (M.A.I.)
| | - Moez A. Ibrahim
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.M.A.); (M.A.I.)
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (M.M.A.-K.)
| | - Mortaga M. Abou-Krisha
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (M.M.A.-K.)
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
3
|
Singh J, Staples RJ, Shreeve JM. Pushing the Limit of Nitro Groups on a Pyrazole Ring with Energy-Stability Balance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61357-61364. [PMID: 34920662 DOI: 10.1021/acsami.1c21510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polynitro compounds exhibit high density and good oxygen balance, which are desirable for energetic material applications, but their syntheses are often very challenging. Now, the design and syntheses of a new three-dimensional (3D) energetic metal-organic framework (EMOF) and high-energy-density materials (HEDMs) with good thermal stabilities and detonation properties based on a polynitro pyrazole are reported. Dipotassium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (5) exhibits a 3D EMOF structure with good thermal stability (202 °C), a high density of 2.15 g cm-3 at 100 K (2.10 g cm-3 at 298 K) in combination with superior detonation performance (Dv = 7965 m s-1, P = 29.3 GPa). Dihydrazinium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (7) exhibits a good density of 1.88 g cm-3 at 100 K (1.83 g cm-3 at 298 K) and superior thermal stability (218 °C), owing to the presence of 3D hydrogen-bonding networks. Its detonation velocity (8931 m s-1) and detonation pressure (35.9 GPa) are considerably superior to those of 1,3,5-trinitro-1,3,5-triazine (RDX). The results highlight the syntheses of a 3D EMOF (5) and HEDM (7) with five nitro groups as potential energetic materials.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
4
|
Deghady AM, Hussein RK, Alhamzani AG, Mera A. Density Functional Theory and Molecular Docking Investigations of the Chemical and Antibacterial Activities for 1-(4-Hydroxyphenyl)-3-phenylprop-2-en-1-one. Molecules 2021; 26:molecules26123631. [PMID: 34198585 PMCID: PMC8231836 DOI: 10.3390/molecules26123631] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/05/2023] Open
Abstract
The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).
Collapse
Affiliation(s)
- Ahmed M. Deghady
- Basic Science Department, Higher Technological Institute, 10th of Ramadan City 44629, Egypt;
| | - Rageh K. Hussein
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence:
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Abeer Mera
- Physics Department, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Wadi Addawasir 11991, Saudi Arabia;
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
5
|
Tang Y, Huang W, Chinnam AK, Singh J, Staples RJ, Shreeve JM. Energetic Tricyclic Polynitropyrazole and Its Salts: Proton-Locking Effect of Guanidium Cations. Inorg Chem 2021; 60:8339-8345. [PMID: 34014642 DOI: 10.1021/acs.inorgchem.1c01202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An axisymmetric polynitro-pyrazole molecule, 3,5-di(3,5-dinitropyrazol-4-yl)]-4-nitro-1H-pyrazole (5), and its salts (6-12) were prepared and fully characterized. These compounds not only show promising energetic properties but also show a unique tautomeric switch via combining different cations with the axisymmetric compound (5). Its salts (6-9) remain axisymmetric when the cations are potassium, ammonium, or amino-1,2,4-triazolium. However, when the cations are guanidiums, the salts (10-12) dramatically become asymmetric owing to the fixed proton. The introduction of guanidium cations breaks the tautomeric equilibrium by blocking the prototropic transformations and results in the switch-off effect to tautomerism. The structural constraints of 1H NMR and 13C NMR spectra provide strong evidence for the unusual structural constraint phenomenon. These stabilized asymmetric tautomers are very important from the point of molecular recognition, and this research may promote further developments in synthetic and isolation methodologies for novel bioactive pyrazole-based compounds.
Collapse
Affiliation(s)
- Yongxing Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.,Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Wei Huang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|