1
|
Castro RH, Corredor LM, Llanos S, Causil MA, Arias A, Pérez E, Quintero HI, Romero Bohórquez AR, Franco CA, Cortés FB. Experimental Investigation of the Viscosity and Stability of Scleroglucan-Based Nanofluids for Enhanced Oil Recovery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:156. [PMID: 38251121 PMCID: PMC10818491 DOI: 10.3390/nano14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/23/2024]
Abstract
Biopolymers emerge as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures, which exhibit better stability than polyacrylamides under harsh conditions. Nonetheless, biopolymers are susceptible to oxidation and biological degradation. Biopolymers reinforced with nanoparticles could be a potential solution to the issue. The nanofluids' stability and performance depend on the nanoparticles' properties and the preparation method. The primary objective of this study was to evaluate the effect of the preparation method and the nanoparticle type (SiO2, Al2O3, and TiO2) on the viscosity and stability of the scleroglucan (SG). The thickening effect of the SG solution was improved by adding all NPs due to the formation of three-dimensional structures between the NPs and the SG chains. The stability test showed that the SG + Al2O3 and SG + TiO2 nanofluids are highly unstable, but the SG + SiO2 nanofluids are highly stable (regardless of the preparation method). According to the ANOVA results, the preparation method and standing time influence the nanofluid viscosity with a statistical significance of 95%. On the contrary, the heating temperature and NP type are insignificant. Finally, the nanofluid with the best performance was 1000 ppm of SG + 100 ppm of SiO2_120 NPs prepared by method II.
Collapse
Affiliation(s)
- Rubén H. Castro
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| | - Laura M. Corredor
- Centro de Innovación y Tecnología—ICP, Ecopetrol S.A., Piedecuesta 681011, Colombia; (L.M.C.); (H.I.Q.)
| | - Sebastián Llanos
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia; (S.L.); (A.A.); (A.R.R.B.)
| | - María A. Causil
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| | - Adriana Arias
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia; (S.L.); (A.A.); (A.R.R.B.)
| | - Eduar Pérez
- Departamento de Ingeniería Mecánica, Universidad Francisco de Paula Santander, Ocaña 546551, Colombia;
| | - Henderson I. Quintero
- Centro de Innovación y Tecnología—ICP, Ecopetrol S.A., Piedecuesta 681011, Colombia; (L.M.C.); (H.I.Q.)
| | - Arnold R. Romero Bohórquez
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia; (S.L.); (A.A.); (A.R.R.B.)
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| |
Collapse
|
2
|
Salem KG, Tantawy MA, Gawish AA, Gomaa S, El-hoshoudy A. Nanoparticles assisted polymer flooding: Comprehensive assessment and empirical correlation. GEOENERGY SCIENCE AND ENGINEERING 2023; 226:211753. [DOI: 10.1016/j.geoen.2023.211753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
3
|
Abbaspour A, Jafari A, Tarahomi DS, Mousavi SM, Kharrat R. Production and characterization of a polysaccharide/polyamide blend from Pseudomonas atacamensis M7D1 strain for enhanced oil recovery application. Int J Biol Macromol 2023; 240:124421. [PMID: 37060969 DOI: 10.1016/j.ijbiomac.2023.124421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Bio-based polymers have better salt and temperature tolerance than most synthetic polymers. The biopolymer solutions have high viscosity, which can lead to reducing the fingering effect and soaring the oil recovery rate. This work aims to produce and characterize a biopolymer from Pseudomonas Atacamensis M7D1 strain, modify the biopolymer yield using Printed Circuit Boards (PCBs) powder as an outer tension in the growth medium, and finally, evaluate the produced biopolymer function for Enhanced Oil Recovery (EOR) purposes. Using PCBs powder to trigger bacteria for higher production yield increases the biopolymer production rate eleven times higher than pure growth medium without additives. Different analyses were performed on the biopolymer to characterize its properties; Gel Permeation Chromatography (GPC) indicated that the produced biopolymer has an average molecular weight of 3.6 × 105 g/mol. This macromolecule has high thermal resistivity and can tolerate high temperatures. Thermal analysis (TGA/DSC) shows only 69.27 % mass lost from 25 °C to 500 °C. The viscosity of 0.5 wt% biopolymer solution equals 3cp, 3 times higher than water. The glass micromodel flooding result shows that biopolymer solution with 0.5 wt% concentration has a 38 % recovery rate which is 21 % higher than water flooding.
Collapse
Affiliation(s)
- Armin Abbaspour
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Arezou Jafari
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Sadat Tarahomi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Riyaz Kharrat
- Department Petroleum Engineering, Montanuniversität, Leoben, Austria
| |
Collapse
|
4
|
Ambaliya M, Bera A. A Perspective Review on the Current Status and Development of Polymer Flooding in Enhanced Oil Recovery Using Polymeric Nanofluids. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Meet Ambaliya
- Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | - Achinta Bera
- Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
5
|
Al-Asadi A, Rodil E, Soto A. Nanoparticles in Chemical EOR: A Review on Flooding Tests. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4142. [PMID: 36500766 PMCID: PMC9735815 DOI: 10.3390/nano12234142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The use of nanofluids is showing promise as an enhanced oil recovery (EOR) method. Several reviews have been published focusing on the main mechanisms involved in the process. This new study, unlike previous works, aims to collect information about the most promising nano-EOR methods according to their performance in core-flooding tests. As its main contribution, it presents useful information for researchers interested in experimental application of nano-EOR methods. Additional recoveries (after brine flooding) up to 15% of the original oil in place, or higher when combined with smart water or magnetic fields, have been found with formulations consisting of simple nanoparticles in water or brine. The functionalization of nanoparticles and their combination with surfactants and/or polymers take advantage of the synergy of different EOR methods and can lead to higher additional recoveries. The cost, difficulty of preparation, and stability of the formulations have to be considered in practical applications. Additional oil recoveries shown in the reviewed papers encourage the application of the method at larger scales, but experimental limitations could be offering misleading results. More rigorous and systematic works are required to draw reliable conclusions regarding the best type and size of nanoparticles according to the application (type of rock, permeability, formation brine, reservoir conditions, other chemicals in the formulation, etc.).
Collapse
Affiliation(s)
- Akram Al-Asadi
- Cross-Disciplinary Research Center in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- Chemical and Petrochemical Techniques Engineering Department, Basra Engineering Technical College, Southern Technical University, Ministry of Higher Education and Scientific Research, Basra 61003, Iraq
| | - Eva Rodil
- Cross-Disciplinary Research Center in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ana Soto
- Cross-Disciplinary Research Center in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Izadi N, Nasernejad B. Newly engineered alumina quantum dot-based nanofluid in enhanced oil recovery at reservoir conditions. Sci Rep 2022; 12:9505. [PMID: 35680935 PMCID: PMC9184488 DOI: 10.1038/s41598-022-12387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
In this work, a newly engineered alumina quantum dot-based nanofluid (α-AQDs; D ~ 4 nm; amorphous solid) and one commercial alumina nanoparticle-based nanofluid (γ-ANPs; D ~ 20 nm; crystalline type) with the capability of strong colloidal dispersion at reservoir conditions, such as, high salinity, divalent ions (Ca2+) and high temperature was compared. The main goal of this research was to study the crude oil displacement mechanisms of alumina suspensions as a function of variety in size and particle morphology in aged carbonate rocks. The strong interaction potential between the particles was achieved by the citric acid and a special composition of a carboxylate-sulfonate-based polyelectrolyte polymer as an effective dispersant compound on the surface, leading to a negative particle charges and an additional steric and electrostatic repulsion. Wettability alteration upon exposure to fluids using the contact angle and the Amott cell were performed on saturated carbonate plug samples and rock slices. While, dynamic core displacements were conducted to test the water/nanofluid/oil flow and nanoparticle retention behavior thorough typical pore throats underground the reservoir conditions. The stability results revealed that PE-polymer was able to create a long-term colloidal fluid during 30 days. It was found that mass concentration of nanofluid increased with decreasing in particle size. The optimal amount of particles in aqueous solution was obtained 0.05 wt% for ANPs, increased up to 0.1 wt% for AQDs. Analysis of experiments showed that wettability alteration was the main mechanism during nanofluid injection. Laboratory core-flooding data proved that the enhanced oil recovery due to a less concentration state by ANPs was consistent with AQDs at higher concentrations. In addition, permeability-impairment-behavior study was discussed in terms of possible mineral scale deposition and alumina release on the rock surface. Results showed that a large extent of permeability damage caused by mineral scale (55-59%). Alumina quantum dot-based nanofluids were found a minimum impairment (2-4%) and a significant reduction of ~ 10% in permeability was observed for ANPs-based nanofluid.
Collapse
Affiliation(s)
- Nosrat Izadi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
| |
Collapse
|
7
|
Mobaraki S, Tabatabaee H, Torkmani RS, Khalilinezhad SS, Ghorashi S. The impact of viscoelastic nanofluids on the oil droplet remobilization in porous media: An experimental approach. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymer nanohybrids have displayed great potential in remobilizing oil droplets through porous media. This research aims at providing some insights into how the hydrolyzed polyacrylamide (HPAM) polymer and Al2O3 nanoparticles’ (NPs) hybrid can push crude oil toward the producers. An understanding of what the hybrid viscosity is when flowing through porous rocks was acquired by the rheological tests. Using the Du Noüy ring method, the interfacial tension (IFT) between the polymer nanohybrid and crude oil was studied. Contact angle experiments were employed to assess the ability of hybrid in reversing surface wettability. The results show that the hybrid can yield a 12% higher shear viscosity than the HPAM solution and the viscosity improvement dramatically depends on NPs’ concentration and temperature. With more than a 23% drop in the contact angle value, the results of contact angle experiments reveal the capability of the Al2O3 NPs in altering surface wettability. The measured IFT between hybrid and crude oil at different temperatures demonstrates that the adsorption of NPs on the oil–aqueous phase interface can significantly improve the capillary number. This article not only presents the underlying mechanisms of oil recovery during hybrid flooding but also provides a new reference for formulating a novel hybrid agent.
Collapse
Affiliation(s)
- Sina Mobaraki
- Department of Reservoir Engineering, Faculty of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Hamid Tabatabaee
- Department of Computer Engineering, Mashhad Branch, Islamic Azad University , Mashhad , Iran
| | - Reza Shiri Torkmani
- Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University , Omidiyeh , Iran
| | | | - Saeed Ghorashi
- Petroleum Engineering Division, Research Institute of Petroleum Industry , Tehran , Iran
| |
Collapse
|
8
|
Gbadamosi A, Patil S, Kamal MS, Adewunmi AA, Yusuff AS, Agi A, Oseh J. Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers (Basel) 2022; 14:polym14071433. [PMID: 35406305 PMCID: PMC9003037 DOI: 10.3390/polym14071433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polymers play a significant role in enhanced oil recovery (EOR) due to their viscoelastic properties and macromolecular structure. Herein, the mechanisms of the application of polymeric materials for enhanced oil recovery are elucidated. Subsequently, the polymer types used for EOR, namely synthetic polymers and natural polymers (biopolymers), and their properties are discussed. Moreover, the numerous applications for EOR such as polymer flooding, polymer foam flooding, alkali–polymer flooding, surfactant–polymer flooding, alkali–surfactant–polymer flooding, and polymeric nanofluid flooding are appraised and evaluated. Most of the polymers exhibit pseudoplastic behavior in the presence of shear forces. The biopolymers exhibit better salt tolerance and thermal stability but are susceptible to plugging and biodegradation. As for associative synthetic polyacrylamide, several complexities are involved in unlocking its full potential. Hence, hydrolyzed polyacrylamide remains the most coveted polymer for field application of polymer floods. Finally, alkali–surfactant–polymer flooding shows good efficiency at pilot and field scales, while a recently devised polymeric nanofluid shows good potential for field application of polymer flooding for EOR.
Collapse
Affiliation(s)
- Afeez Gbadamosi
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Shirish Patil
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence:
| | - Muhammad Shahzad Kamal
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Ahmad A. Adewunmi
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Adeyinka S. Yusuff
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti PMB 5454, Nigeria;
| | - Augustine Agi
- Department of Petroleum Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Jeffrey Oseh
- Department of Petroleum Engineering, School of Engineering and Engineering Technology, Federal University of Technology, Owerri PMB 1526, Nigeria;
| |
Collapse
|
9
|
Shayan Nasr M, Esmaeilnezhad E, Choi HJ. Effect of carbon-based and metal-based nanoparticles on enhanced oil recovery: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Sowunmi A, Orodu O, Efeovbokhan V, Ogundare S. Comparative dataset on the characterization of natural polymers and nanocomposites for enhanced oil recovery. Data Brief 2020; 33:106506. [PMID: 33294507 PMCID: PMC7683321 DOI: 10.1016/j.dib.2020.106506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 12/01/2022] Open
Abstract
Polymer flooding is one of the most effective processes to improve crude oil recovery. However, the capacity of natural polymers to displace crude oil is determined by their rheological behaviour in the face of prevailing reservoir conditions. Poor rheological stability of water-soluble polymers challenges their application in harsh reservoir conditions, making it important to investigate the characteristics of polymers and their corresponding nanocomposites for use in enhanced oil recovery (EOR). The main objective of this work is to conduct characterization tests for three polymers (Gum Arabic, Xanthan Gum and Guar Gum) and three nanoparticles (silica, alumina and cupric), and to investigate the viscosity profile of the polymers under different conditions of temperature, salinity, nanoparticle weight percentage and polymer weight percentage. SEM was used to characterize the nanoparticles while FTIR and TGA were used to characterize the polymers. All viscosity measurements were conducted using an OFITE Viscometer. The SEM, FTIR and TGA results are presented in figures while the viscosity results are presented as raw data in tables. The data should be used to support oil recovery experiments, economic analysis of the use of polymers and nanocomposites in EOR and the study of adsorption and permeability impairment in core flooding tests.
Collapse
Affiliation(s)
- Akinleye Sowunmi
- Department of Chemical Engineering, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| | - Oyinkepreye Orodu
- Department of Petroleum Engineering, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| | - Vincent Efeovbokhan
- Department of Chemical Engineering, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| | - Solomon Ogundare
- Department of Chemical Engineering, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
11
|
Kumar RS, Narukulla R, Sharma T. Comparative Effectiveness of Thermal Stability and Rheological Properties of Nanofluid of SiO 2–TiO 2 Nanocomposites for Oil Field Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ravi Shankar Kumar
- Enhanced Oil Recovery Laboratory, Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh 229304, India
| | - Ramesh Narukulla
- Enhanced Oil Recovery Laboratory, Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh 229304, India
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh 229304, India
| | - Tushar Sharma
- Enhanced Oil Recovery Laboratory, Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
12
|
Bera A, Shah S, Shah M, Agarwal J, Vij RK. Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124833] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Hemmat Esfe M, Esfandeh S. 3D numerical simulation of the enhanced oil recovery process using nanoscale colloidal solution flooding. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|