1
|
Ravi S, Priyadharshini P, Deviga G, Mariappan M, Karthikeyan S, Pannipara M, G Al-Sehemi A, Moon D, Philip Anthony S. Water sensitive fluorescence tuning of V-shaped ESIPT fluorophores: Substituent effect and trace amount water sensing in DMSO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123838. [PMID: 38181625 DOI: 10.1016/j.saa.2024.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Highly sensitive nature of excited state intramolecular proton transfer (ESIPT) functionality in organic fluorophores made them potential candidates for developing environmental sensors and bioimaging applications. Herein, we report the synthesis of V-shaped Dapsone based Schiff base ESIPT derivatives (1-3) and water sensitive wide fluorescence tuning from blue to red in DMSO. Solid-state structural analysis confirmed the V-shaped molecular structure with intramolecular H-bonding and substituent dependent molecular packing in the crystal lattice. 1 showed strong solid-state fluorescence (λmax = 554 nm, Φf = 21.2 %) whereas methoxy substitution (2 and 3) produced tunable but significantly reduced fluorescence (λmax = 547 (2) and 615 nm (3), Φf = 2.1 (2) and 6.5 % (3)). Interestingly, aggregation induced emission (AIE) studies in DMSO-water mixture revealed water sensitive fluorescence tuning. The trace amount of water (less than 1 %) in DMSO converted the non-emissive 1-3 into highly emissive state due to keto tautomer formation. Further increasing water percentage produced deprotonated state of 1-3 in DMSO and enhanced the fluorescence intensity with red shifting of emission peak. At higher water fraction, 1-3 in DMSO produced aggregates and red shifted the emission with reduction of fluorescence intensity. The concentration dependent fluorescence study revealed the very low detection limit of water in DMSO. The limit of detection (LOD) of 1, 2 and 3 were 0.14, 1.04 and 0.65 % of water in DMSO. Hence, simple Schiff bases of 1-3 showed water concentration dependent keto isomer, deprotonated and aggregated state tunable fluorescence in DMSO. Further, scanning electron microscopic (SEM) studies of 1-3 showed water concentration controlled self-assembly and tunable fluorescence.
Collapse
Affiliation(s)
- Sasikala Ravi
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Prakash Priyadharshini
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Govindan Deviga
- Department of Chemistry, SRM IST, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mariappan Mariappan
- Department of Chemistry, SRM IST, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | | | - Mehboobali Pannipara
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Republic of Korea.
| | | |
Collapse
|
2
|
Different positions of cyano substitution controlled directionality of ESIPT processes with two asymmetric proton acceptors system: A TD-DFT study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Yu X, Cao Y, Li Y, Cui J, Sun C. Substituent effect induced the distinctive ESIPT reaction and photophysical property of N-salycilidene-5-chloroaminopyridine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Ji F, Guo Y, Wang M, Wang C, Wu Z, Wang S, Wang H, Feng X, Zhao G. New insights into ESIPT mechanism of three sunscreen compounds in solution: A combined experimental and theoretical study. Colloids Surf B Biointerfaces 2021; 207:112039. [PMID: 34416444 DOI: 10.1016/j.colsurfb.2021.112039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 01/29/2023]
Abstract
In this present work, we have successfully designed and investigated three flavonoid sunscreen compounds. Based on steady-state spectroscopy and time-dependent density functional theory (TDDFT), the mechanism of excited state intramolecular proton transfer (ESIPT) of sunscreen compounds was studied. The calculated UV-vis absorption spectra and fluorescence emission spectra are in good agreement with the experimental results in methanol solution. The potential energy curve demonstrates that the ESIPT process can easily occur in the three sunscreen compounds without energy barrier. Therefore, the absorbed excitation energy can get back to the ground state through a non-radiative relaxation process. Light stability tests ensure that the three flavonoids have the potential as sunscreens. This work provides not only an application of the ESIPT process in sunscreen mechanisms, but also a theory basis for the development of novel sunscreen molecules.
Collapse
Affiliation(s)
- Feixiang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Chao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Zibo Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Shiping Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Haiyuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Xia Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China.
| |
Collapse
|
5
|
Ding S, Xu A, Sun A, Xia Y, Liu Y. Substituent effect on ESIPT and hydrogen bond mechanism of N-(8-Quinolyl) salicylaldimine: A detailed theoretical exploration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118937. [PMID: 32977109 DOI: 10.1016/j.saa.2020.118937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The effects of substituent on excited-state intramolecular proton transfer (ESIPT) and hydrogen bonding of N-(8-Quinolyl) salicylaldimine (QS) have been studied by theoretical calculation with DFT and TDDFT. The representative electron-withdrawing nitryl and electron-donating methoxyl were selected to analyze the effects on geometries, intramolecular hydrogen bond interaction, absorption/fluorescence spectra, and the ESIPT process. The configurations of the three molecules (QS, QS-OMe and QS-NO2) were optimized in the ground and excited states. The structure parameters, infrared spectra, hydrogen bond interactions, frontier molecular orbitals, absorption/fluorescence spectra, and potential curves have cross-validated the current results. The results show that the introduction of substituent results in a bathochromic-shift of the absorption and fluorescence spectra with large Stokes shift, and is more beneficial to the ESIPT process. The current work will be beneficial to the improvement of ESIPT properties and deepen understanding of the mechanism of ESIPT process.
Collapse
Affiliation(s)
- Sha Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China; Hunan Key Laboratory of Biomass Fiber Functional Materials, Hunan University of Technology, Zhuzhou 412007, China
| | - Aixiang Xu
- School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Aokui Sun
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; Hunan Key Laboratory of Biomass Fiber Functional Materials, Hunan University of Technology, Zhuzhou 412007, China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yuejun Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
6
|
Zhang N, Liu G, Sun Y, Wang Y, Yan J, Liu X. H2 Evolution Upon Hydrolysis of Ammonia-Borane Catalyzed by Porphyrin Stabilized Nanocatalysts. Catal Letters 2021. [DOI: 10.1007/s10562-020-03501-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Zhang N, Liu D, Chen W, Liu X, Yan J. Solvent effect on excited-state intramolecular proton transfer process based on ‘naked’ diazaborepins. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Ni M, Fang H. Modulating excited‐state intramolecular proton transfer of 2‐(5‐(4‐carboxyphenyl)‐2‐hydroxyphenyl)benzothiazole depending on substituents: A DFT/TD‐DFT study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mei Ni
- Department of Chemistry and Material Science, College of Science Nanjing Forestry University Nanjing China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science Nanjing Forestry University Nanjing China
| |
Collapse
|
9
|
Su S, Fang H. Modulating ESIPT behavior and fluorescent sensing mechanism of 2-(2′-hydroxyphenol)thiazole-4-carbonxaldeyde derivatives: A theoretical study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Zhang N, Zhang T, Wen L, Wang L, Yan J, Zheng K. Tuning the excited-state intramolecular proton transfer (ESIPT) process of indole–pyrrole systems by π-conjugation and substitution effects: experimental and computational studies. Phys Chem Chem Phys 2020; 22:1409-1415. [DOI: 10.1039/c9cp05064g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of amino (NH)-type hydrogen-bonding (H-bonding) compounds, BNDAB-1–4, containing π-enlarged indole and β-ethoxycarbonyl-substituted pyrrole units were designed and synthesized.
Collapse
Affiliation(s)
- Nuonuo Zhang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Tingting Zhang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Liu Wen
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Jiaying Yan
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
- P. R. China
| |
Collapse
|
11
|
Huang Y, Chen W, Shen J, Wang Y, Liu X. Synthesis of graphene quantum dots stabilized CuNPs and their applications in CuAAC reaction and 4-nitrophenol reduction. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Zhang N, Wen L, Yan J, Liu G, Zhang T, Wang Y, Liu X. A facile synthesis of seven-membered N, O-ligands and their optical properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Liu N, Chao F, Yan J, Huang N, Ren Z, Wang L. Metal‐Organic Frameworks of Cu
3
(BTC)
2
Catalyzed Cascade C‐H Activation/C‐S Coupling/C‐O Cyclization Reaction Strategy: One‐Pot Efficient Synthesis of Phenoxathiines. ChemistrySelect 2019. [DOI: 10.1002/slct.201903494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Na Liu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Fei Chao
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Jiaying Yan
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Nian‐Yu Huang
- Hubei Key Laboratory of Natural Products Research and DevelopmentChina Three Gorges University, Yichang Hubei 443002 China
| | - Zhi‐Lin Ren
- College of Chemical EngineeringHubei University of Arts and Science, Xiangyang Hubei 441053 China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
- Material Analysis and Testing CenterChina Three Gorges University, Yichang Hubei 443002, China
| |
Collapse
|