1
|
Zhang Q, Gao X, Liu K, Gao N, Cheng S, Dai Y, Dong H, Liu J, He G, Li H. A dual-functional electrolyte additive displaying hydrogen bond fusion enables highly reversible aqueous zinc ion batteries. Commun Chem 2024; 7:173. [PMID: 39117779 PMCID: PMC11310298 DOI: 10.1038/s42004-024-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, aqueous zinc-ion batteries (AZIBs) have attracted significant attention in energy storage due to their notable advantages, including high safety, low cost, high capacity, and environmental friendliness. However, side reactions like hydrogen evolution and zinc (Zn) dendrites can significantly impact their Coulombic efficiency (CE) and lifespan. Effectively addressing these issues has become a focus of research in this field. In our study, dimethyl sulfoxide (DMSO) and nanodiamonds (NDs) were used to optimize the electrolyte of AZIBs. Benefiting from the hydrogen bond fusion of DMSO and NDs, which regulates the Zn deposition behavior, effectively inhibiting the growth of Zn dendrites, hydrogen evolution, and corrosion. The Zn | |Zn symmetric cells using NDs-DMSO-ZS demonstrate exceptional cycling stability for over 1500 h at 1 mA cm-2, while the Zn//Cu asymmetric cells achieve up to 99.8% CE at 2 mA cm-2. This study not only shows the application prospects of electrolyte optimization in enhancing AZIBs performance, but also provides a reference for the advancement of electrolyte technology in advanced AZIBs technology.
Collapse
Affiliation(s)
- Qiuxia Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Jilin, Changchun, 130012, PR China
| | - Xuan Gao
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
- Department of Engineering Science, University of Oxford, 17 Parks Road, Oxford, OX1 3PJ, UK.
| | - Kejiang Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Jilin, Changchun, 130012, PR China
| | - Nan Gao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Jilin, Changchun, 130012, PR China
| | - Shaoheng Cheng
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Jilin, Changchun, 130012, PR China
| | - Yuhang Dai
- Department of Engineering Science, University of Oxford, 17 Parks Road, Oxford, OX1 3PJ, UK
| | - Haobo Dong
- School of Future Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641, PR China
| | - Junsong Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Jilin, Changchun, 130012, PR China.
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Hongdong Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Jilin, Changchun, 130012, PR China.
| |
Collapse
|