1
|
Carabadjac I, Vormittag LC, Muszer T, Wuth J, Ulbrich MH, Heerklotz H. Transfer of ANS-Like Drugs from Micellar Drug Delivery Systems to Albumin Is Highly Favorable and Protected from Competition with Surfactant by "Reserved" Binding Sites. Mol Pharm 2024; 21:2198-2211. [PMID: 38625037 DOI: 10.1021/acs.molpharmaceut.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.
Collapse
Affiliation(s)
- Iulia Carabadjac
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Leonie C Vormittag
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Thomas Muszer
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Jakob Wuth
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5s 3M2, Ontario, Canada
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| |
Collapse
|
2
|
Szymczyk K, Taraba A, Zdziennicka A, Jańczuk B. Adsorption and volumetric properties of some nonionic surfactants and their mixtures with quercetin and rutin. Adv Colloid Interface Sci 2023; 314:102885. [PMID: 36963333 DOI: 10.1016/j.cis.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The adsorption and volumetric properties of the Triton X-114 (TX114), Tween 80 (T80), quercetin (Q) and rutin (Ru) at the different temperatures in relation to above properties of the TX114 and T80 mixtures with quercetin and rutin in the absence and presence of alcohol were discussed based on the studies reported in the literature. The adsorption isotherms of the mixtures of the nonionic surfactants with flavonoids in the presence and absence of alcohol were analyzed based on the isotherms of the surface tension of the particular mixture components and thermodynamic parameters of the adsorption of these components at the water-air interface. The surface tension isotherms of the particular component of the mixtures were taken into account while considering the surface tension isotherms of the mixtures and the composition of the mixed surface layer at the water-air interface. Different ways of the mixed surface layer composition determination were shown. The values of the surface tension and composition of the mixed surface layers obtained using different methods were discussed in the light of the intermolecular interactions and their contribution to the surface tension of the surfactants mixture with flavonoids and alcohol. The composition of the mixed monolayer and the bulk phase were compared and the differences between them were explained. The behaviour of the nonionic surfactants and flavonoids in the presence and absence of alcohol was analyzed in relation to the micelle formations and molar volumes of the mixtures and their components. Moreover, the micelles composition and their size as well as the thermodynamic parameters of the micellization process were analyzed.
Collapse
Affiliation(s)
- Katarzyna Szymczyk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Anna Taraba
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Anna Zdziennicka
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
3
|
Zheng Y, Bao Z, Fan Y, Wang X. Spectrometric Study on the Hydrophobic Hydration in the Formation of Tween-60 Micelles with Curcumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
CMC determination using isothermal titration calorimetry for five industrially significant non-ionic surfactants. Colloids Surf B Biointerfaces 2022; 211:112320. [PMID: 35042120 DOI: 10.1016/j.colsurfb.2022.112320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Surfactants are used in a vast array of products including pharmaceuticals, cosmetics and household formulations. From an industrial perspective, non-ionic surfactants are ideal for inclusion within such products as they are non-toxic, simple to formulate and economic to use. This study considers five non-ionic surfactants (Tween 20, Tween 80, Crodasol, Croduret and Etocas 35) to determine the critical micellar concentration (CMC) for each using isothermal titration calorimetry, thus avoiding issues regarding poor accuracy found with other techniques. Furthermore, this methodology has not previously been applied to this group of surfactants. For the most commonly used non-ionics (Tween 20 and Tween 80) a further study was undertaken to consider the influence of surfactant purity on the CMC determined, using standard grade (Tween 20 and 80), high purity (Tween 20 HP and Tween 80 HP) and Super Refined (SR PS20 and SR PS80). Results permitted calculation of the CMC for the surfactants whereupon the values were determined to range from 1.0 mM for Tween 20 HP to 2.9 mM for Tween 80 HP. Such information regarding the CMC event is useful from a formulation perspective as it can ensure that the most optimum concentration of surfactant is included within a formulation to maximize its efficacy.
Collapse
|
5
|
Knoch H, Ulbrich MH, Mittag JJ, Buske J, Garidel P, Heerklotz H. Complex Micellization Behavior of the Polysorbates Tween 20 and Tween 80. Mol Pharm 2021; 18:3147-3157. [PMID: 34251210 DOI: 10.1021/acs.molpharmaceut.1c00406] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polysorbates (PSs, Tweens) are widely used surfactant products consisting of a sorbitan ring connecting up to four ethylene oxide (EO) chains of variable lengths, one or more of which are esterified with fatty acids of variable lengths and saturation degrees. Pharmaceutical applications include the stabilization of biologicals in solutions and the solubilization of poorly water soluble, active ingredients. This study characterizes the complex association behavior of compendial PSs PS20 and PS80, which is fundamentally different from that of single-component surfactants. To this end, a series of demicellization experiments of isothermal titration calorimetry with different PS concentrations are evaluated. Their experiment-dependent heats of titration are converted into a common function of the state of a sample, the micellar enthalpy Qm(c). These functions demonstrate that initial micelles are already present at the lowest concentrations investigated, 2 μM for PS20 and 10 μM for PS80. Initial micelles consist primarily of the surfactant species with the lowest individual critical micelle concentration (cmc). With increasing concentration, the other PS species gradually enter these micelles in the sequence of increasing individual cmc's and hydrophilic-lipophilic balance. Concentration ranges with pronounced slopes of Qm(c) can be tentatively assigned to the uptake of the major components of the PS products. Micellization and the variation of the micelle properties progress up to at least 10 mM PS. That means the published cmc values or ranges of PS20 and PS80 may be related to certain, major components being incorporated into and forming specific micelles but must not be interpreted in terms of an absence of micelles below and constant properties, e.g., the surface activity, of the micelles above these ranges. The micellization enthalpy curves differ quite substantially between PS20 and PS80 and, in a subtler fashion, between individual quality grades such as high purity, pure lauric acid/pure oleic acid, super-refined, and China grade.
Collapse
Affiliation(s)
- Hannah Knoch
- Institute of Pharmaceutical Sciences, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Maximilian H Ulbrich
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg im Breisgau, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Judith J Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany.,Institute of Chemistry, Martin-Luther-University of Halle-Wittenberg, 06108 Halle, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, 79085 Freiburg im Breisgau, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany.,Leslie Dan Faculty of Pharmacy, University of Toronto, M5S Toronto, Canada
| |
Collapse
|