1
|
Gao X, Chang S, Liu F, Wei J, Yan B. Adsorption characteristics of ciprofloxacin hydrochloride on polystyrene microplastics in freshwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24139-24152. [PMID: 38436855 DOI: 10.1007/s11356-024-32750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In order to reveal the adsorption mechanism of microplastics (MPs) on antibiotics, polystyrene (PS) was chosen as a typical microplastic, Fenton and high-temperature aging methods were used to obtain aged MPs particles. The adsorption behavior and mechanism of ciprofloxacin hydrochloride (CIP) on PS before and after aging were studied by batch adsorption experiments, and other influencing environmental conditions were evaluated concurrently. The results showed that the adsorption of CIP on PS was an exothermic reaction, the pseudo-second-order model and Freundlich isothermal models could fit the adsorption of CIP on PS. Aging treatment enhanced the adsorption capacity of PS to CIP, and Fenton aging for 7 days had the best effect. The highest adsorption was observed when the solution pH was 6. The adsorption capacity of microplastics gradually decreased with increasing ionic strength and the concentration of fulvic acid, while the aging microplastics changed little with the concentration of fulvic acid. The presence of both Cu (II) and CIP inhibits the adsorption of each other on microplastics. Based on the above findings, the adsorption of CIP on PS is dominated by physical adsorption, and electrostatic interactions and hydrogen bonding interactions are also important mechanisms for the adsorption of CIP on microplastics.
Collapse
Affiliation(s)
- Xi Gao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Silu Chang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Fengxu Liu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiayu Wei
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, 300457, People's Republic of China.
- Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin, 300457, People's Republic of China.
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
2
|
Khan P, Saha R, Halder G. Towards sorptive eradication of pharmaceutical micro-pollutant ciprofloxacin from aquatic environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170723. [PMID: 38340867 DOI: 10.1016/j.scitotenv.2024.170723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Antibiotics are widely prioritized pharmaceuticals frequently adopted in medication for addressing numerous ailments of humans and animals. However, the non-judicious disposal of ciprofloxacin (CIP) with concentration levels exceeding threshold limit in an aqueous environment has been the matter of growing concern nowadays. CIP is found in various waterways with appreciable mobility due to its limited decay in solidified form. Hence, the effective eradication strategy of this non-steroidal anti-inflammatory antibiotic from aqueous media is pivotal for preventing the users and the biosphere from their hazardous impacts. Reportedly several customary techniques like reverse osmosis, precipitation, cross-filtration, nano-filtration, ion exchange, microbial remediation, and adsorption have been employed to eliminate CIP from water. Out of them, adsorption is ascertained to be a potential method because of lesser preliminary investment costs, ease of operation, greater efficiency, less energy usage, reduced chemical and biological slurry production, and ready availability of precursor materials. Towards remediation of ciprofloxacin-laden water, plenty of researchers have used different adsorbents. However, the present-day challenge is opting the promising sorbent and its application towards industrial scale-up which is vital to get reviewed. In this article, adsorbents of diverse origins are reviewed in terms of their performances in CIP removal. The review stresses the impact of various factors on sorptive assimilation of CIP, adsorption kinetics, isotherms, mechanism of ionic interaction, contrivances for CIP detection, cost estimation and reusability assessments of adsorbents also that may endorse the next-generation investigators to decide the efficacious, environmental appealing and cost-competitive adsorbents for effective riddance of CIP from wastewater.
Collapse
Affiliation(s)
- Priyanka Khan
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Rajnarayan Saha
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Gopinath Halder
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
3
|
Zhai M, Fu B, Zhai Y, Wang W, Maroney A, Keller AA, Wang H, Chovelon JM. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. WATER RESEARCH 2023; 236:119924. [PMID: 37030197 DOI: 10.1016/j.watres.2023.119924] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The coexistence of pharmaceuticals and heavy metals is regarded as a serious threat to aquatic environments. Adsorbents have been widely applied to the simultaneous removal of pharmaceuticals and metals from aqueous phase. Through a comprehensive review, behaviors that promote, inhibit, or have no effect on simultaneous adsorption of pharmaceuticals and heavy metals were found to depend on the system of contaminants and adsorbents and their environmental conditions, such as: characteristics of adsorbent and pollutant, temperature, pH, inorganic ions, and natural organic matter. Bridging and competition effects are the main reasons for promoting and inhibiting adsorption in coexisting systems, respectively. The promotion is more significant in neutral or alkaline conditions. After simultaneous adsorption, a solvent elution approach was most commonly used for regeneration of saturated adsorbents. To conclude, this work could help to sort out the theoretical knowledge in this field, and may provide new insights into the prevention and control of pharmaceuticals and heavy metals coexisting in wastewater.
Collapse
Affiliation(s)
- Mudi Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yuhui Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Weijie Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Amy Maroney
- College of Engineering and Science, Louisiana Tech University, 201 Mayfield Ave. Ruston, LA 71272, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| | - Jean-Marc Chovelon
- IRCELYON, CNRS UMR 5256, Université Claude Bernard Lyon 1, 2 Avenue Albert-Einstein, Villeurbanne F-69626, France
| |
Collapse
|
4
|
Chen Y, Li Z. Interaction of norfloxacin and hexavalent chromium with ferrihydrite nanoparticles: Synergistic adsorption and antagonistic aggregation behavior. CHEMOSPHERE 2022; 299:134386. [PMID: 35318022 DOI: 10.1016/j.chemosphere.2022.134386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The co-existence of hexavalent chromium (Cr(VI)) and norfloxacin (NOR) can be detected in natural environments. However, the interaction of the co-existing Cr(VI), NOR and ferrihydrite nanoparticles (FNPs, a ubiquitous natural iron oxide nanoparticle) is lacking investigation. Figuring out this interaction could help us better predict the transport and fate of the relevant contaminants. Here, the adsorption and aggregation of FNPs in the presence of Cr(VI) and NOR were investigated. Comparing to FNPs interaction with Cr(VI) or NOR alone, the co-existence of Cr(VI) and NOR could lead to a synergistic effect to increase their adsorption onto FNPs. This observation can be attributed to the complexation between Cr(VI) and carboxyl or amino groups from NOR. Furthermore, the aggregation of FNPs could be accelerated by Cr(VI) through charge neutralization since the adsorption of Cr(VI) could decrease the surface potential of FNPs (positive charge). However, the presence of NOR will increase the surface charge, and thus stabilize FNPs. In general, the aggregation state of FNPs in the presence of co-existing Cr(VI) and NOR depends on their ratio. Overall, these understandings help us predict the transport and fate of FNPs and the associated contaminants in natural environments.
Collapse
Affiliation(s)
- Yufan Chen
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Zhixiong Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Tsai CK, Lee YC, Nguyen TT, Horng JJ. Levofloxacin degradation under visible-LED photo-catalyzing by a novel ternary Fe-ZnO/WO 3 nanocomposite. CHEMOSPHERE 2022; 298:134285. [PMID: 35304208 DOI: 10.1016/j.chemosphere.2022.134285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
As semiconductor photocatalysts showing their efficient redox ability upon illumination, new development of materials to enhance the pollution degradation is gaining popularity, especially on their oxidation ability. In this study, a highly stable ternary Fe-ZnO/WO3 nanocomposite photocatalyst has been synthesized in order to improve charge transfer of photocatalytic oxidation under 30W LED light (425-470 nm) to efficiency degrade the Levofloxacin (LVF) in the solution. This catalyst was characterized and analyzed by XRD, FE-SEM, HR-TEM, X-ray XPS, UPS, PL, TRPL, LSV, EIS, and Photocurrent. Various important factors for the photodegradation were investigated, including Fe content, initial LVF concentration, catalyst dosage, and solution pH. The optimal conditions were Fe 1.0 wt%, LVF 10 mg L-1, Fe-ZnO/WO3 dosage 0.5 g L-1, and pH 7 for LVF photodegradation up to 96% with a kinetic rate constant of 0.0342 min-1 and were stable in photodegradation efficiency (90%) after five test cycles. In the visible LED light, the activation bandgap was estimated to be 2.75 eV with high electron-hole pair separation and charge transfer from Fe-ZnO to WO3 that could enhance the generation of active species of •OH. Moreover, the more effective charge separation of Fe-ZnO/WO3 were confirmed by lower PL intensity and longer charge carrier lifetime. Fe-ZnO/WO3 also demonstrated the excellent electrochemical properties with high photocurrent and small resistance. For the LVF degradation, 3 possible pathways were proposed with 12 intermediate products. This study demonstrated that the synthesized Fe-ZnO/WO3 could serve as a reliable visible-light responsive photocatalysts with the potential for degrading antibiotics in solution.
Collapse
Affiliation(s)
- Cheng-Kuo Tsai
- Department of Safety Health and Environment, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Emergency Toxic Response Information Center, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
| | - Yu-Chin Lee
- Department of Safety Health and Environment, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Thanh Tam Nguyen
- Faculty of Environment, University of Science (VNUHCM), Ho Chi Minh City, 700000, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Jao-Jia Horng
- Department of Safety Health and Environment, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Emergency Toxic Response Information Center, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| |
Collapse
|
6
|
Yu F, Bai X, Liang M, Ma J. HKUST-1-Derived Cu@Cu(I)@Cu(II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Zhou Z, Sun Y, Wang Y, Yu F, Ma J. Adsorption behavior of Cu(II) and Cr(VI) on aged microplastics in antibiotics-heavy metals coexisting system. CHEMOSPHERE 2022; 291:132794. [PMID: 34742765 DOI: 10.1016/j.chemosphere.2021.132794] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Recently, the microplastics, as well as the compound pollution of heavy metals and antibiotics, in the aqueous environment have attracted increasing attention, but studies on the behavior of heavy metals on aged microplastics in antibiotics-heavy metals coexisting system are limited. Herein, to explore the impact of antibiotics on the adsorption of heavy metals by aged microplastics, the adsorption behavior of Cu(II) and Cr(VI) on aged polystyrene (PS) and polyvinyl chloride (PVC) were investigated. The results presented that ciprofloxacin (CIP) had negative and positive impacts on the adsorption of Cu(II) and Cr(VI) by aged microplastics, respectively. Moreover, the existence of CIP seemed to have no evident effect on the type of adsorption isotherm model and kinetic model in most adsorption systems of Cu(II). The negative impact of CIP on adsorption of Cu(II) may result from the competition adsorption and high steric hindrance effect, while non-specific interactions between neutral antibiotic-heavy metal complexes and the hydrophobic surface of aged microplastics as well as CIP as bridges influenced positively on adsorption of Cr(VI) on aged microplastics. This work was concerned with the interaction between binary pollutants and aging microplastics to clarify the risks of microplastics in the aqueous environment.
Collapse
Affiliation(s)
- Ziqing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| | - Yiran Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
8
|
Li H, Huang Y, Liu J, Duan H. Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review. CHEMOSPHERE 2021; 282:131046. [PMID: 34102493 DOI: 10.1016/j.chemosphere.2021.131046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Hazardous heavy metals and radionuclides in water and wastewater are of drastic concern owing to their detrimental impacts on the organisms as well as the circumambient ecosystem. To remove them as much as we can, both technique and materials were studied in the past years. The adsorption technique as superior water remediation method with the simplicity of design, environmental friendliness and high efficiency was well established. Consequently, it is practically important to explore advanced and economically feasible absorbents for removing these poisonous pollutants from aqueous solutions. So far, large numbers of experiments proved hydrothermally synthesized titanate nanomaterials (TNMs) could be a prospectively excellent adsorbent extracting heavy metals and radionuclides from water due to the high specific surface area, tunable pore size, abundant surface active sites, favorable hydrophilic properties. The objective of this work is to give an overview of hydrothermal synthesis, adsorption performance of TNMs for heavy metals and radionuclides, as well as the various influencing factors for water purification. It comprehensively reviews the structural changes and regenerability of TNMs after adsorption, and different modification methods adopted for improving removal capacity. Additionally, it uniquely highlights the efficient decontamination of the pollutants through a synergistic effect of adsorption and photocatalysis by TNMs. This review provides detailed information for the development, application, and research challenges faced by hydrothermally synthesized TNMs for the removal of heavy metals and radionuclides from aqueous solutions, which will serve as a reference guide for scientists in related fields.
Collapse
Affiliation(s)
- Hanyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yi Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, China.
| | - Jianing Liu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Haoran Duan
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| |
Collapse
|
9
|
|
10
|
Ali R, Alminderej FM, Messaoudi S, Saleh SM. Ratiometric ultrasensitive optical chemisensor film based antibiotic drug for Al(III) and Cu(II) detection. Talanta 2021; 221:121412. [PMID: 33076057 DOI: 10.1016/j.talanta.2020.121412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Herein, we developed and designed a novel ratiometric optical chemisensor film for determining Al(III) and Cu(II) in low concentration ranges. The chemisensor film consists of (a) antibacterial drug Ciprofloxacin (CPFX) [1-cyclopropyl-6-fluoro1,4-dihydro-4-oxo-7-(piperaziny-l-yl) quinolone-3carboxylic acid] and (b) a reference dye 5,10,15,20- tetrakis (pentafluorophenyl) porphyrin (TFPP) in a polyvinyl chloride (PVC) matrix. PVC was applied as a homogeneous system for mixing CPFX and TFPP. The emission intensity of the CPFX in the PVC matrix varies depending on the concentrations of the Al(III) and Cu(II) ions. When the sensor film is immersed in different Al(III) concentrations, a significant fluorescence enhancement of the CPFX at (427 nm) is observed. Furthermore, the fluorescence intensity of the red emission of the TFPP dye at (644 nm) does not alter. However, in the presence of Cu(II) ions, a considerable emission quenching of the CPFX peak at (427 nm) is observed. PVC provides a great permeability and penetration facilities of dissolved ions that make the sensor film sensitive to Al(III) or Cu(II) changes outside the matrix. The film displays immense sensitivity depending on their distinctive optical characteristics of CPFX and detection capabilities within a low detection limit LOD for Al(III) and Cu(II). The LOD values were estimated to be 2.05 x 10-7 M and 1.04 x 10-7 M respectively with a relative standard deviation RSDr (1%, n=3). Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to study Cu(II) and Al(III) complexation structures and their electronic properties in solution and in the sensor film. The interference of the chemisensor film was examined using different cations and the chemisensor provides significant selectivity. We develop a new ratiometric chemisensor based on PVC polymer film for Al(III) and Cu(II) detection.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, Faculty of Science, Suez University, 43518 Suez, Egypt; Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia; Carthage University, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, 43721, Suez, Egypt.
| |
Collapse
|
11
|
Li F, Wei Z, He K, Blaney L, Cheng X, Xu T, Liu W, Zhao D. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. WATER RESEARCH 2020; 185:116219. [PMID: 32731078 DOI: 10.1016/j.watres.2020.116219] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as a major concern in aquatic systems worldwide due to their widespread applications and health concerns. Perfluorooctanoic acid (PFOA) is one of the most-detected PFAS. Yet, a cost-effective technology has been lacking for the degradation of PFAS due to their resistance to conventional treatment processes. To address this challenge, we prepared a novel adsorptive photocatalyst, referred to Fe/TNTs@AC, based on low-cost commercial activated carbon (AC) and TiO2. The composite material exhibited synergistic adsorption and photocatalytic activity and enabled a novel "concentrate-&-destroy" strategy for rapid and complete degradation of PFOA in water. Fe/TNTs@AC was able to adsorb PFOA within a few minutes, thereby effectively concentrating the target contaminant on the photoactive sites. Subsequently, Fe/TNTs@AC was able to degrade >90% of PFOA that was preconcentrated on the solid in 4 h under UV irradiation (254 nm, 21 mW cm‒2), of which 62% was completely mineralized to F-. The efficient photodegradation also regenerated Fe/TNTs@AC, eliminating the need for expensive chemical regenerants, and after six cycles of adsorption/photodegradation, the material showed no significant drop in adsorption capacity or photocatalytic activity. Simulations based on the density functional theory (DFT) revealed that Fe/TNTs@AC adsorbs PFOA in the side-on parallel mode, facilitating the subsequent photocatalytic degradation of PFOA. According to the DFT analysis, scavenger tests, and analysis of degradation intermediates, PFOA decomposition is initiated by direct hole oxidation, which activates the molecule and leads to a series of decarboxylation, C-F bond cleavage, and chain shortening reactions. The innovative "concentrate-&-destroy" strategy may significantly advance conventional adsorption or photochemical treatment of PFAS-contaminated water and holds the potential to degrade PFOA, and potentially other PFAS, more cost-effectively.
Collapse
Affiliation(s)
- Fan Li
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, United States
| | - Zongsu Wei
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, United States
| | - Ke He
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, MD 21250, United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, MD 21250, United States
| | - Xinquan Cheng
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States
| | - Tianyuan Xu
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, United States
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China; The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, China.
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
12
|
Maged A, Kharbish S, Ismael IS, Bhatnagar A. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32980-32997. [PMID: 32524402 PMCID: PMC7417422 DOI: 10.1007/s11356-020-09267-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Abstract
The presence of emerging pollutants such as hazardous chemicals, pharmaceuticals, pesticides, and endocrine-disrupting chemicals in water sources is a serious concern to the environment and human health. Thus, this study focused on exploring the interaction mechanisms between ciprofloxacin (CIP) (antibiotic) and clay (a low-cost adsorbent) during sorption process. Acid activation technique was opted for modifying natural bentonite (NB) to enhance the adsorptive removal of CIP from water. The BET surface area analysis revealed that acid-activated bentonite (AAB) possessed more than two fold higher surface area as compared to NB. Combining pHzpc measurements, effect of solution pH and CIP speciation revealed that CIP sorption onto bentonite is highly dependent on solution pH. Kinetic studies confirmed that CIP sorption mechanism was chemisorption which included ion-exchange and surface complexation mechanisms. The mechanism of CIP sorption onto AAB was successfully explored with the assistance of characterization techniques. Maximal monolayer sorption capacity of AAB was found to be 305.20 mg/g, compared to 126.56 mg/g for NB. Reusability studies demonstrated that AAB could be reused successfully up to 5 cycles. Furthermore, column studies showed satisfactory results confirming that AAB can be successfully used in continuous mode for practical applications.
Collapse
Affiliation(s)
- Ali Maged
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Geology Department, Faculty of Science, Suez University, El Salam City, Suez Governorate, 43518, Egypt.
| | - Sherif Kharbish
- Geology Department, Faculty of Science, Suez University, El Salam City, Suez Governorate, 43518, Egypt
| | - Ismael Sayed Ismael
- Geology Department, Faculty of Science, Suez University, El Salam City, Suez Governorate, 43518, Egypt
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
13
|
Chen Y, Armutlulu A, Sun W, Jiang W, Jiang X, Lai B, Xie R. Ultrafast removal of Cu(II) by a novel hierarchically structured faujasite-type zeolite fabricated from lithium silica fume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136724. [PMID: 32018958 DOI: 10.1016/j.scitotenv.2020.136724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Novel hierarchically structured Faujasite Type (FAU) zeolite was fabricated from industrial waste lithium silica fume (LSF) via hydrothermal method without the addition of templates. The FAU zeolites exhibited spherical filler morphology with maximum surface area of 372.8 m2/g, enriched microporosity (0.164 cm3/g), and abundant mesoporosity. Owing to its unique structure, the FAU zeolite allowed ultrafast diffusion and rapid trap of copper ion inside the cages of zeolite crystals, and achieved maximum removal (78.76%) of Cu(II) within the very first 2 min, with adsorption rate constant 5.46-6.27 times greater than that of mesoporous commercial zeolite (CZ) between 15 and 45 °C. The physico-chemical structures of the FAU zeolites were carefully studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier Transform Infrared Spectrometry (FT-IR), surface area analyzer (BET) and X-ray photoelectron spectroscopy (XPS). The maximum qe toward Cu(II) achieved by FAU zeolite (i.e., Z9, S/A of 9) featuring a qe of 94.46 mg/g at 25 °C as per calculated from Langmuir model, which is more than twice amount achieved by CZ (39.15 mg/g). Z9 also showed outstanding selectivity for Cu(II) over various coexisting ions. The saturated Z9 can be regenerated with a mild washing procedure, and the spent zeolite can be reused as effective antibacterial agent. This work proposes a cost-effective and green synthesis route for the hierarchically structured zeolite with high copper selective removal capacity from industrial waste.
Collapse
Affiliation(s)
- Yi Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Andac Armutlulu
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 27, 8092 Zurich, Switzerland
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Wenju Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, PR China
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, PR China
| | - Bo Lai
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
14
|
Zheng M, Ji H, Duan J, Dang C, Chen X, Liu W. Efficient adsorption of europium (III) and uranium (VI) by titanate nanorings: Insights into radioactive metal species. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100031. [PMID: 36160918 PMCID: PMC9488033 DOI: 10.1016/j.ese.2020.100031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/12/2023]
Abstract
Radioactive wastewater containing high concentration of radionuclides poses severe threats to ecosystem and human health, so efficient removal of these toxic heavy metals is urgently needed. Titanate nanomaterials have been demonstrated good adsorbents for heavy metals due to ion exchange property. In this study, titanate nanorings (TNRs) were synthesized using the facile hydrothermal-cooling method. The TNRs were composed of sodium trititanate, with a chemical formula of Na0.66H1.34Ti3O7•0.27H2O and a Na content of 2.38 mmol/g. The TNRs demonstrated sufficient adsorption performance to radionuclides europium (Eu) and uranium (U) ions. Specifically, even at a high initial concentration of 50 mg/L, 86.5% and 92.6% of the two metal ions can be rapidly adsorbed by the TNRs within 5 min, and equilibrium was reached within 60 min at pH 5. The maximum adsorption capacity (Q max) obtained by the Langmuir isotherm model was 115.3 mg/g for Eu(III) and 282.5 mg/g for uranium U(VI) at pH 5, respectively. The adsorption capacities of the two metals under various water chemical conditions were highly related to their species. Ion exchange between metal cations and Na+ in the TNR interlayers was the dominant adsorption mechanism, and adsorption of U(VI) was more complicated because of the co-existence of various uranyl (UO2 2+) and uranyl-hydroxyl species. The spent TNRs were effectively regenerated through an acid-base or ethylenediamine tetraacetic acid (EDTA) treatment and reused. Considering the large adsorption capacity and quick kinetic, TNRs are promising materials to remove radionuclides in environmental purification applications, especially emergent treatment of leaked radionuclides.
Collapse
Affiliation(s)
- Maosheng Zheng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Haodong Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing, 100871, China
- Beijing Engineering Research Center for Advanced Wastewater Treatment, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jun Duan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chenyuan Dang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xingmin Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing, 100871, China
- Beijing Engineering Research Center for Advanced Wastewater Treatment, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|