1
|
Thanh PN, Phung VD, Nguyen TBH. Recent advances and future trends in metal oxide photocatalysts for removal of pharmaceutical pollutants from wastewater: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:364. [PMID: 39126526 DOI: 10.1007/s10653-024-02140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The rapid and widespread increase in pharmaceutical micropollutants (PMPs) poses a significant and immediate threat to ecosystems and human health globally. With the demand for clean water becoming increasingly critical, particularly amid escalating global water scarcity challenges, there is an urgent need for innovative approaches. Among the potential solutions, metal oxide photocatalysts such as titanium dioxide-based (TiB) and zinc oxide-based (ZnB) have garnered attention due to their cost-effectiveness, efficient photodegradation capabilities, and inherent stability. This comprehensive review explores recent advancements in the application of TiB and ZnB for the removal of PMPs from wastewater. It examines the multifaceted impacts of PMPs on environmental and public health, evaluates various techniques for their removal, and assesses design strategies aimed at maximizing the photocatalytic efficiency of TiB and ZnB. The mechanisms responsible for the photocatalytic degradation of pharmaceutical micropollutants using TiB and ZnB photocatalysts are comprehensively detailed. Finally, the review outlines the prospects and challenges associated with the use of TiB and ZnB photocatalysts for the removal of PMPs from wastewater. It emphasizes their potential to effectively mitigate PMP contaminants and make substantial contributions to sustainable water management practices in the face of escalating environmental and public health concerns.
Collapse
Affiliation(s)
- Phong Nguyen Thanh
- Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Viet-Duc Phung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 70000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City, 50000, Vietnam
| | - Tuan B H Nguyen
- VKTECH Research Center, Hi-tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
2
|
Hosseinpoor S, Sheikhmohammadi A, Rasoulzadeh H, Saadani M, Ghasemi SM, Alipour MR, Hadei M, Aghaei Zarch SM. Comparison of modeling, optimization, and prediction of important parameters in the adsorption of cefixime onto sol-gel derived carbon aerogel and modified with nickel using ANN, RSM, GA, and SOLVER methods. CHEMOSPHERE 2024; 353:141547. [PMID: 38447896 DOI: 10.1016/j.chemosphere.2024.141547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Today, the main goal of many researchers is the use of high-performance, economically and industrially justified materials, as well as recyclable materials in removing organic and dangerous pollutants. For this purpose, sol-gel derived carbon aerogel modified with nickel (SGCAN) was used to remove Cefixime from aqueous solutions. The influence of important parameters in the cefixime adsorption onto SGCAN was modeled and optimized using artificial neural network (ANN), response surface methodology (RSM), genetic algorithm (GA), and SOLVER methods. R software was applied for this purpose. The design range of the runs for a time was in the range of 5 min-70 min, concentration in the range of 5 mg L-1 to 40 mg L-1, amount of adsorbent in the range of 0.05 g L-1 to 0.15 g L-1, and pH in the range of 2.0-11. The results showed that the ANN model due to lower Mean Squared Error (MSE), Sum of Squared Errors (SSE), and Root Mean Squared Error (RMSE) values and also higher R2 is a superior model than RSM. Also, due to the superiority of ANN over the RSM model, the optimum results were calculated based on GA. Based on GA, the highest Cefixime adsorption onto SGCAN was obtained in pH, 5.98; reaction time, 58.15 min; initial Cefixime concentration, 15.26 mg L-1; and adsorbent dosage, 0.11 g L-1. The maximum adsorption capacity of Cefixime onto SGCAN was determined to be 52 mg g-1. It was found the pseudo-second-order model has a better fit with the presented data.
Collapse
Affiliation(s)
- Saeed Hosseinpoor
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran.
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Department of Environmental Health Engineering, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Saadani
- Department of Environmental Health Engineering, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mohammad Reza Alipour
- Department of Environmental Health Engineering, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hassan E, Gahlan AA, Gouda GA. Biosynthesis approach of copper nanoparticles, physicochemical characterization, cefixime wastewater treatment, and antibacterial activities. BMC Chem 2023; 17:71. [PMID: 37424027 DOI: 10.1186/s13065-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
The aim of this paper is the green synthesis of copper nanoparticles (Cu NPs) via Quinoa seed extract. X-ray diffraction (XRD) results confirmed the production of the pure crystalline face center cubic system of the Cu NPs with an average crystallite size of 8.41 nm. Infrared spectroscopy (FT-IR) analysis confirmed the capping and stabilization of the Cu NPs bioreduction process. UV visible spectroscopy (UV-Vis). surface plasmon resonance revealed the absorption peak at 324 nm with an energy bandgap of 3.47 eV. Electrical conductivity was conducted assuring the semiconductor nature of the biosynthesized Cu NPs. Morphological analysis was investigated confirming the nano-characteristic properties of the Cu NPs as polycrystalline cubic agglomerated shapes in scanning electron microscopy (SEM) analysis. Transmission electron microscopy (TEM) analysis also was used to assess the cubic shapes at a particle size of 15.1 ± 8.3 nm and a crystallinity index about equal to 2.0. Energy dispersive spectroscopy (EDX) was conducted to investigate the elemental composition of the Cu NPs. As a potential utility of the biosynthesized Cu NPs as nano adsorbents to the removal of the Cefixime (Xim) from the pharmaceutical wastewater; adsorption studies and process parameters were being investigated. The following strategic methodology for maximum Xim removal was conducted to be solution pH 4, Cu NPs dosage 30 mg, Xim concentration 100 mg/L, and absolute temperature 313 K. The maximum monolayer adsorption capacity was 122.9 mg/g according to the Langmuir isothermal model, and the kinetic mechanism was pseudo-second-order. Thermodynamic parameters also were derived as spontaneous chemisorption endothermic processes. Antibacterial activity of the Xim and Xim@Cu NPs was investigated confirming they are highly potent against each Gram-negative and Gram-positive bacterium.
Collapse
Affiliation(s)
- Esraa Hassan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed A Gahlan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
4
|
Polycation-stabilized PDADMAC-gold nanoparticles as a highly sensitive colorimetric sensor for the detection of the chlorpyrifos pesticide. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Amirhandeh SZH, Salem A, Salem S. Treatment of tannery wastewater by silica nanoparticles produced from rice husk ash via a green route. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13039-13047. [PMID: 36125676 DOI: 10.1007/s11356-022-23052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Rice husk, which is one of the abundant agricultural biomasses in nature, contains organic and inorganic elements, spastically silica. This waste is frequently managed via incineration, resulting in the contamination of soil, water, and air due to emission of greenhouse gasses and ash. In the present investigation, the potential of silica powder obtained from the rice husk was demonstrated by the removal of Cr(III) from the tannery wastewater. Different combinations of sulfuric, hydrochloric, and acetic acids were used as precipitation agents to produce silica through the conventional and ultrasound-assisted techniques. The mesoporous silica fabricated via the sonication indicated the larger pores, 22 nm, compared to that produced via the conventional method by the employment of sulfuric acid, 10 nm, leading to achieve an adsorption capacity ~385 mg g-1. Although both of applied techniques could develop mesoporous structure, precipitation should be carried out under sonication in the presence of acetic acid for the green production of silica with the appropriate adsorption performance. The conversion of rice husk into silica powder with specific surface area ~62 m2 g-1 could prevent the environmental pollution due to employment of acetic acid in the precipitation stage.
Collapse
Affiliation(s)
| | - Amin Salem
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.
- Center of Excellence for Color Science and Technology, Tehran, Iran.
| | - Shiva Salem
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| |
Collapse
|
6
|
Aniruddha R, Sreedhar I. Process optimization for enhanced carbon capture and cyclic stability using adsorbents derived from coal fly ash. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8393-8402. [PMID: 34773588 DOI: 10.1007/s11356-021-17453-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Zeolites and metal-organic frameworks (MOFs) are popular adsorbents when it comes to capturing CO2 from the gaseous feed stream. In this study, a hybrid of zeolite and ZIF-8 adsorbent was synthesized from coal fly ash via fusion-hydrothermal process and then in-situ aqueous ZIF-8 synthesis technique. This technique of in-situ synthesis is highly cost-effective as it is done at room temperature. The hybrid adsorbent showed an enhanced microporosity as compared to zeolites synthesized from coal fly ash due to the in-situ synthesis of ZIF-8 upon coal fly ash zeolite. It was designated as CFAZ/ZIF-8. At 298 K, a maximum CO2 uptake value of 2.83 mmol/g was observed with a constant decrease with an increase in temperature. BET surface area value of 426 m2/g was obtained for this adsorbent. Kinetics fit for the best uptake value was performed with the Avrami model kinetics, describing the adsorption well at an R2 value of 0.997 for the fit. The adsorbent also showed impressive cyclic stability after five cycles of carbonation and decarbonation. The cyclic stability studies show that the as-synthesized hybrid adsorbent shows promise in CO2 uptake studies.
Collapse
Affiliation(s)
- Ramadurgam Aniruddha
- Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Inkollu Sreedhar
- Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
7
|
Pham TD, Truong TTT, Nguyen HL, Hoang LBL, Bui VP, Tran TTM, Dinh TD, Le TD. Synthesis and Characterization of Novel Core-Shell ZnO@SiO 2 Nanoparticles and Application in Antibiotic and Bacteria Removal. ACS OMEGA 2022; 7:42073-42082. [PMID: 36440119 PMCID: PMC9685607 DOI: 10.1021/acsomega.2c04226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 06/15/2023]
Abstract
A novel core-shell nanomaterial, ZnO@SiO2, based on rice husk for antibiotic and bacteria removal, was successfully fabricated. The ZnO@SiO2 nanoparticles were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), photoluminescence spectroscopy (PL), Brunauer-Emmett-Teller (BET) method, diffuse reflectance ultraviolet-vis (DR-UV-vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and ζ-potential measurements. β-Lactam antibiotic amoxicillin (AMX) was removed using ZnO@SiO2 nanoparticles with an efficiency greater than 90%, while Escherichia coli removal was higher than 91%. The optimum effective conditions for AMX removal using ZnO@SiO2, including solution pH, adsorption time, and ZnO@SiO2 dosage, were 8, 90 min, and 25 mg/mL, respectively. The maximum adsorption capacity reached 52.1 mg/g, much higher than those for other adsorbents. Adsorption isotherms of AMX on ZnO@SiO2 were more in accordance with the Freundlich model than the Langmuir model. The electrostatic attraction between negative species of AMX and the positively charged ZnO@SiO2 surface induced adsorption, while the removal of E. coli was governed by both electrostatic and hydrophobic interactions. Our study demonstrates that ZnO@SiO2 based on rice husk is a useful core-shell nanomaterial for antibiotic and bacteria removal from water.
Collapse
Affiliation(s)
- Tien-Duc Pham
- Faculty
of Chemistry, University of Science, Vietnam
National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi100000, Vietnam
| | - Thi-Thuy-Trang Truong
- Faculty
of Chemistry, University of Science, Vietnam
National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi100000, Vietnam
| | - Ha-Linh Nguyen
- HUS
High School for Gifted Students, University of Science, Vietnam National University, Hanoi, 182 Luong The Vinh, Thanh Xuan, Hanoi100000, Vietnam
| | - Ly-Bao-Long Hoang
- HUS
High School for Gifted Students, University of Science, Vietnam National University, Hanoi, 182 Luong The Vinh, Thanh Xuan, Hanoi100000, Vietnam
| | - Viet-Phuong Bui
- Faculty
of Chemistry, University of Science, Vietnam
National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi100000, Vietnam
| | - Thi-Tra-My Tran
- Faculty
of Chemistry, University of Science, Vietnam
National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi100000, Vietnam
| | - Thi-Diu Dinh
- Faculty
of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi100000, Vietnam
| | - Thi-Dung Le
- Faculty
of Chemistry, University of Science, Vietnam
National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi100000, Vietnam
| |
Collapse
|
8
|
Vu TN, Le PHP, Pham DNP, Hoang TH, Nadda AK, Le TS, Pham TD. Highly adsorptive protein inorganic nanohybrid of Moringa seeds protein and rice husk nanosilica for effective adsorption of pharmaceutical contaminants. CHEMOSPHERE 2022; 307:135856. [PMID: 35944682 DOI: 10.1016/j.chemosphere.2022.135856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/02/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The present study aims to investigate adsorption characteristics and mechanisms of Moringa (MO) seeds protein on nanosilica rice husk and their applications in removal of pharmaceutical residues including the fluoroquinolone antibiotic levofloxacin (LFX) and the nonsteroidal anti-inflammatory drug diclofenac (DCF) in aquatic environment. Molecular weight of MO protein was determined by gel-permeation chromatography (GPC) method while its amino acids were quantified by high performance liquid chromatography (HPLC). The number-(Mn) and weight-average molecular weights (Mw) of MO protein were 1.53 × 104 and 1.61 × 104 g/mol, respectively. Different effective conditions on adsorption protein on nanosilica including contact time, pH, adsorbent dosage, and ionic strength were systematically optimized and found to be 180 min, 10, 10 mg/mL and 1 mM KCl, respectively. The surface charge change by zeta potential, surface modification by Fourier-transform infrared spectroscopy (FT-IR) and adsorption isotherms demonstrated that protein adsorption on nanosilica was governed by both electrostatic and non-electrostatic interactions. Application of protein functionalized nanosilica (ProFNS) in LFX and DCF removal were also thoroughly studied. The selected conditions for LFX and DCF removal using ProFNS were 1 mM KCl for both LFX and DCF; pH 8 and pH 6; contact time 90 and 120 min, and adsorption dosage 10 and 5 mg/ml for LFX and DCF, respectively. Adsorption isotherms of protein on nanosilica as well as LFX and DCF onto ProFNS at different ionic strengths were reasonably fitted by the two-step model while a pseudo-second-order model could fit adsorption kinetic well. The removal of LFX and DCF using ProFNS significantly increased from 51.51% to 87.35%, and 7.97%-50.02%, respectively. High adsorption capacities of 75.75 mg/g for LFX and 59.52 mg/g for DCF, indicate that ProFNS is a great performance for pharmaceutical residues removal in water environment.
Collapse
Affiliation(s)
- Thi Ngan Vu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Pham Hai Phong Le
- HUS High School for Gifted Students, University of Science, Vietnam National University, Hanoi, 182 Luong the Vinh, Thanh Xuan, Hanoi, 100000, Viet Nam
| | - Duc Nam Phuong Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Thu Ha Hoang
- University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, 100000, Viet Nam.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Thanh Son Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam.
| |
Collapse
|
9
|
Sereshti H, Beyrak-Abadi E, Esmaeili Bidhendi M, Ahmad I, Shahabuddin S, Rashidi Nodeh H, Sridewi N, Wan Ibrahim WN. Sulfide-Doped Magnetic Carbon Nanotubes Developed as Adsorbent for Uptake of Tetracycline and Cefixime from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203576. [PMID: 36296765 PMCID: PMC9608992 DOI: 10.3390/nano12203576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 05/27/2023]
Abstract
In this study, a magnetic solid-phase extraction method was developed based on multi-wall carbon nanotubes decorated by magnetic nanoparticles (Fe3O4) and cadmium sulfide nanoparticles (Fe3O4@MWCNT-CdS) for trace extraction of cefixime and tetracycline antibiotics from urine and drug company wastewater. The adsorbent features were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and energy dispersive X-ray analysis (EDX). Various effective parameters on the sorption and desorption cycle, such as sorption time, the mass of adsorbent, pH, salt addition, and material ratio, were investigated and optimized. The data were evaluated using isotherm models, and experimental data were well-fitted to both Langmuir (R2 = 0.975) and Freundlich (R2 = 0.985) models. Moreover, kinetic of reaction was agreement with pseudo-second-order (R2 = 0.999) as compared pseudo-first-order (R2 = 0.760). The maximum adsorption capacity for tetracycline and cefixime was achieved at 116.27 and 105.26 mg·g-1, respectively. Hence, the prepared adsorbent can be used as an alternative material for enhanced determination of pharmaceutical substances in biological fluids.
Collapse
Affiliation(s)
- Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran P.O. Box 13145-1384, Iran
| | - Elahe Beyrak-Abadi
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran P.O. Box 13145-1384, Iran
| | - Mehdi Esmaeili Bidhendi
- School of Environment, College of Engineering, University of Tehran, Tehran P.O. Box 13145-1384, Iran
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Shahabuddin
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat 382426, India
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj P.O. Box 31745-139, Iran
| | - Nanthini Sridewi
- Department of Maritime Science and Technology, Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia
| | | |
Collapse
|
10
|
Mango Seed-Derived Hybrid Composites and Sodium Alginate Beads for the Efficient Uptake of 2,4,6-Trichlorophenol from Simulated Wastewater. Catalysts 2022. [DOI: 10.3390/catal12090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, mango seed shell (MS)-based hybrid composite and composite beads (FeCl3-NaBH4/MS and Na-Alginate/MS) were designed. Batch and column experimental analyses were performed for the uptake of 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. The physicochemical characteristics of both composites were also examined. From the batch adsorption experiments, the best adsorption capacities of 28.77 mg/g and 27.42 mg/g were observed in basic media (pH 9–10) at 308 K for FeCl3-NaBH4/MS and 333 K for Na-Alginate/MS with 25 mg/L of 2,4,6-TCP concentration for 120 min. The rate of reaction was satisfactorily followed by the pseudo-second-order kinetics. Equilibrium models revealed that the mechanism of reaction followed the Langmuir isotherm. The thermodynamic study also indicated that the nature of the reaction was exothermic and spontaneous with both adsorbents. Desorption experiments were also carried out to investigate the reliability and reusability of the composites. Furthermore, the efficiency of the adsorbents was checked in the presence of different electrolytes and heavy metals. From the batch experimental study, the FeCl3-NaBH4/MS composite proved to be the best adsorbent for the removal of the 2,4,6-TCP pollutant, hence it is further selected for fixed-bed column experimentation. The column study data were analyzed using the BDST and Thomas models and the as-selected FeCl3-NaBH4/MS hybrid composites showed satisfactory results for the fixed-bed adsorption of the 2,4,6-TPC contaminants.
Collapse
|
11
|
Dinh TD, Phan MN, Nguyen DT, Le TMD, Nadda AK, Srivastav AL, Pham TNM, Pham TD. Removal of beta-lactam antibiotic in water environment by adsorption technique using cationic surfactant functionalized nanosilica rice husk. ENVIRONMENTAL RESEARCH 2022; 210:112943. [PMID: 35176314 DOI: 10.1016/j.envres.2022.112943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
This study aims to investigate the adsorption characteristics of cationic surfactant, cetyltrimethylamonium bromide (CTAB) onto negatively nanosilica rice husk surface and the application for antibiotic treatment in water environment. Adsorption of CTAB onto nanosilica increased with an increase of solution pH, due to an enhancement of the electrostatic attraction between cationic methylamomethylamonium groups and negatively charged nanosilica surface enhanced at higher pH. Adsorption of CTAB decreased with a decrease of ionic strength while a common intersection point (CIP) was observed for adsorption isotherm at different ionic strengths, suggesting that hydrophobic interactions between alkyl chains in CTAB molecules significantly induced adsorption and admicelles with bilayer formation were dominant than monolayer of hemimicelles. The CTAB functionalized nanosilica (CFNS) was applied for removal of beta-lactam amoxicillin (AMX). The best conditions for AMX treatment using CFNS were selected as pH 10, contact time 60 min and CFNS dosage 10 mg/mL. Removal efficiency of AMX using CFNS reached to 100% under optimum conditions while it was only 25.01% using nanosilica without CTAB. The maximum AMX adsorption capacity using CFNS of about 25 mg/g was much higher than other adsorbents. The effects of different organics such as humic acid, anionic surfactant, and other antibiotics on AMX removal using CFNS were also studied. A two-step model can fit CTAB uptake isotherms onto nanosilica and AMX onto CFNS well at different KCl concentrations. Based on the desorption of CTAB with AMX adsorption as well as adsorption isotherms, the change in surface charge and functional vibration groups after adsorption, we indicate that AMX adsorption onto CFNS was mainly controlled by electrostatic interaction. We reveal that CFNS is an excellent adsorbent for antibiotic treatment from aqueous solution.
Collapse
Affiliation(s)
- Thi Diu Dinh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam; Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam
| | - Minh Nguyet Phan
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam
| | - Duc Thang Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam
| | - Thi Mai Dung Le
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh - 173 234, India
| | - Arun Lal Srivastav
- School of Engineering and Technology, Chitkara University, Himachal Pradesh-174103, India
| | - Thi Ngoc Mai Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam.
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam; Office of Academic Affairs, University of Science, Vietnam National University, Hanoi - 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Viet Nam.
| |
Collapse
|
12
|
Nayl AA, Abd-Elhamid AI, Aly AA, Bräse S. Recent progress in the applications of silica-based nanoparticles. RSC Adv 2022; 12:13706-13726. [PMID: 35530394 PMCID: PMC9073631 DOI: 10.1039/d2ra01587k] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalized silica nanoparticles (SiO2 NPs) have attracted great attention due to their promising distinctive, versatile, and privileged physiochemical characteristics. These enhanced properties make this type of functionalized nanoparticles particularly appropriate for different applications. A lack of reviews that summarizes the fabrications of such nanomaterials and their different applications in the same work has been observed in the literature. Therefore, in this work, we will discuss the recent signs of progress in the fabrication of functionalized silica nanoparticles and their attractive applications that have been extensively highlighted (advanced catalysis, drug-delivery, biomedical applications, environmental remediation applications, and wastewater treatment). These applications have been selected for demonstrating the role of the surface modification step on the various properties of the silica surface. In addition, the current challenges in the applications of functionalized silica nanoparticles and corresponding strategies to discuss these issues and future perspectives for additional improvement have been addressed.
Collapse
Affiliation(s)
- A A Nayl
- Department of Chemistry, College of Science, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - A I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University 61519-El-Minia Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76133 Karlsruhe Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen D-76344 Germany
| |
Collapse
|
13
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Shan X, Yang L, Zhao Y, Yang H, Xiao Z, An Q, Zhai S. Biochar/Mg-Al spinel carboxymethyl cellulose-La hydrogels with cationic polymeric layers for selective phosphate capture. J Colloid Interface Sci 2022; 606:736-747. [PMID: 34419814 DOI: 10.1016/j.jcis.2021.08.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
Recently, biochar-related phosphate sorbents have been extensively investigated and achieved significant progress; however, there is still much room for enhancement on capturing performance and recovery of powdery ones after sorption. Herein, a new kind of adsorbent, in which biochar/Mg-Al spinel encapsulated in carboxymethyl cellulose-La hydrogels with cationic polymeric layers, was fabricated, aiming for integrating multi-advantages of each component for enhanced phosphate capture. Batch static experiments were correlated to the phosphate adsorption performance of the adsorbent. The maximum phosphate adsorption capacity of the adsorbent was 89.65 mg P/g at pH = 3. The Langmuir isotherm model and the pseudo-second-order kinetic model fitted well with the adsorption behavior of the adsorbent. More importantly, this composite adsorbent that integrated with biochar, Mg-Al spinel, cationic polymeric components exhibited favorable selectivity over coexisting anions (Cl-, SO42-, HCO3- and NO3-) and performed good reusability after five consecutive cycles. By virtue of the bead-like feature, fixed-bed column experiments demonstrated that the Thomas model fitted the breakthrough curves well under varied experimental conditions. The adsorption mechanism of phosphate on the designed composite adsorbent with multi-components could be described as the electrostatic attraction, ligand exchange and inner-sphere complexation, which might account for the efficient phosphate capturing performance.
Collapse
Affiliation(s)
- Xiangcheng Shan
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Liyu Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yumeng Zhao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huarong Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Shan X, Yang L, Yang H, Song G, Xiao Z, Ha CS, Zhai S, An Q. Preparation of resin-based composites containing Ce and cationic polymers with abundant promotional affinity sites for phosphate capture. NEW J CHEM 2022. [DOI: 10.1039/d2nj03245g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new type of composite, D301-Ce+, for efficient and selective phosphate removal.
Collapse
Affiliation(s)
- Xiangcheng Shan
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Liyu Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huarong Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guilin Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chang-sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Republic of Korea
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Le MC, Le TH, Bui Thi TH, Nguyen QD, Do Thi TH, Tran Thi MN. Synthesizing and Evaluating the Photocatalytic and Antibacterial Ability of TiO 2/SiO 2 Nanocomposite for Silicate Coating. Front Chem 2021; 9:738969. [PMID: 34604172 PMCID: PMC8485069 DOI: 10.3389/fchem.2021.738969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
The TiO2/SiO2 nanocomposite has been synthesized by a sol-gel method and investigated the effect of the SiO2 content (0, 5, 10, 15, 20, and 50%) on the rutile-to-anatase phase transition of TiO2 NPs. In order to increase the photocatalytic efficiency of the nanocomposite and decrease the price of material, the TiO2/SiO2 Nc with content SiO2 of 15% sample is chosen for preparing silicate coating. The efficiency of photocatalytic MB and antibacterial ability in the air of W silicate coating (adding TiO2/SiO2 Nc (15%)) achieve almost 100% for 60 h and 94.35% for 3 h, respectively. While the efficiency of photocatalytic MB and antibacterial ability of WO silicate coating (adding commercial TiO2/SiO2) is about 25–30% for 60 h and 6.02% for 3 h, respectively. The presence of TiO2/SiO2 Nc (15%) with a larger surface area in W silicate coating can provide increased centers for absorption, photocatalytic reaction, and the contact between sample and bacteria lead to enhance the photocatalytic and antibacterial ability of W silicate coating.
Collapse
Affiliation(s)
- Manh-Cuong Le
- Faculty of Building Material, National University of Civil Engineering, Hanoi, Vietnam
| | - Thu-Huong Le
- Faculty of Chemistry and Environment, Thuyloi University, Hanoi, Vienam
| | - Thanh-Huyen Bui Thi
- Faculty of Building Material, National University of Civil Engineering, Hanoi, Vietnam
| | - Quang-Dat Nguyen
- Faculty of Building Material, National University of Civil Engineering, Hanoi, Vietnam
| | - Thanh-Ha Do Thi
- Faculty of Building Material, National University of Civil Engineering, Hanoi, Vietnam
| | - Minh-Nguyet Tran Thi
- Faculty of Building Material, National University of Civil Engineering, Hanoi, Vietnam
| |
Collapse
|
17
|
Nguyen QK, Hoang TH, Bui XT, Nguyen TAH, Pham TD, Pham TNM. Synthesis and application of polycation-stabilized gold nanoparticles as a highly sensitive sensor for molecular cysteine determination. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Setiawan WK, Chiang KY. Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study. CHEMOSPHERE 2021; 279:130541. [PMID: 33873070 DOI: 10.1016/j.chemosphere.2021.130541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Carboxylic acid leaching has been established eco-friendly pre-treatment method for producing biogenic silica (BSi) from rice husk. The most urgent issue is for carboxylic acid to promote new readily biodegradable acids and enhance carboxylic acid sustainability in BSi preparation. This research investigates gluconic acid (GA) applicability for biogenic silica preparation from rice husk compared with citric acid (CA). The results demonstrated that GA was preferable to CA on BSi recovery with 89.91% efficiency. Although GA leaching promoted slightly higher silica loss, the primary metal alkali impurities, such as K2O, Na2O, and Al2O3, were effectively removed at 92-93%, 89-93%, 95-97%, respectively. The combination effect of silica loss and high removal impurities resulted in lower rice husk thermal decomposition activation energy. The characteristics of BSi prepared by GA leaching were comparable with CA leaching, mainly mesoporous with 114.06 m2/g of specific surface area and 0.23 cm3/g of the pore volume. In addition, GA leaching was environmentally better than CA leaching, indicated by minor contribution to all environmental impact indices. The findings suggested that GA could be a potential replacement for prevalent carboxylic acids in BSi preparation.
Collapse
Affiliation(s)
- Wahyu Kamal Setiawan
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City, 32001, Taiwan
| | - Kung-Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City, 32001, Taiwan.
| |
Collapse
|
19
|
Rahman N, Varshney P. Effective removal of doxycycline from aqueous solution using CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43599-43617. [PMID: 33837937 DOI: 10.1007/s11356-021-13584-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
The primary focus of the present study was to synthesize CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan to explore its potential for uptake of doxycycline (DXN) from water. The composite material was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and thermogravimetric analysis-differential thermal analysis. Central composite design under response surface methodology was opted to optimize the process variables (pH, adsorbent dosage, contact time and initial concentration of DXN) for obtaining the highest removal efficiency. The removal of DXN reached 98.84% at 303 K under the optimum conditions of pH 7.0, equilibrating time of 70 min, adsorbent dose of 20 mg/25 mL and initial concentration of 50 mg L-1. The Langmuir isotherm and pseudo-second-order kinetic models fitted best with the experimental data. The values of ΔG° (- 29.159 to - 31.997 kJ mol-1), ΔH° (56.768 kJ mol-1) and ΔS° (283.382 J mol-1 K-1) demonstrated the spontaneous and endothermic nature of adsorption process. The adsorption/desorption study revealed the reusability of the prepared composite material for DXN uptake up to six cycles.
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Poornima Varshney
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
20
|
Chapa-Rodríguez R, Avila-de la Rosa G, Pérez E. Thermal stability and ageing properties of PP–PE film modulated by nano-silica particles: comparison between dry and moist particles. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Salman AD, Juzsakova T, Ákos R, Ibrahim RI, Al-Mayyahi MA, Mohsen S, Abdullah TA, Domokos E. Synthesis and surface modification of magnetic Fe 3O 4@SiO 2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28428-28443. [PMID: 33538976 DOI: 10.1007/s11356-020-12170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The main objective of this work is to produce an eco-friendly and economically nano-adsorbent which can separate scandium metal ions Sc from a model aqueous phase prior to applying these adsorbents in industrial filed. The magnetic core-shell structure Fe3O4@SiO2 nanoparticles were synthesized by modified Stöber method and functionalized with (3-aminopropyl) triethoxysilane APTES as a coupling agent and ethylenediaminetetraacetic acid (EDTA) as a ligand. Magnetic nano support adsorbents exhibit many attractive opportunities due to their easy removal and possibility of reusing. The ligand grafting was chemically robust and does not appreciably influence the morphology or the structure of the substrate. To evaluate the potential, the prepared hybrid nanoparticles were used as nano-adsorbent for Sc ions from model aqueous solutions due to the fact that rare earth elements (REEs) have a strong affinity for oxygen and nitrogen donors. The iron oxide nanoparticles were prepared by co-precipitation method at pH 10 and pH 11 to get the best morphology and nanoscale dimensions of iron oxide magnetic nanoparticles. The particle size, morphology, specific surface area, and surface modification were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and X-ray powder diffraction (XRD). The results showed that the Fe3O4 nanoparticles with average particle size of 15 ± 3 nm were successfully synthesized at pH 11, and 25 °C. Moreover, the prepared Fe3O4 nanoparticles were coated with amorphous SiO2 and functionalized with amino and carboxyl groups. The adsorption study conditions of Sc are as follows: the initial concentrations of the Sc model solution varied 10-50 mg/L, 20 mL volume, 20-80 mg of the Fe3O4@SiO2-COO adsorbent, pH range of 1-5, and 5 h contact time at 25 °C temperature. The adsorption equilibrium was represented with Langmuir, Freundlich, and Temkin isotherm models. Langmuir model was found to have the correlation coefficient value in good agreement with experimental results. However, the adsorption process followed pseudo-second-order kinetics.
Collapse
Affiliation(s)
- Ali Dawood Salman
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary.
- Department of Chemical and Petroleum Refining Engineering/College of Oil and Gas Engineering, Basrah University, Basra, Iraq.
| | - Tatjána Juzsakova
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Rédey Ákos
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Raheek I Ibrahim
- Electromechanical Engineering Department, University of Technology- Iraq, Baghdad, Iraq.
| | - Mohammad A Al-Mayyahi
- Department of Chemical and Petroleum Refining Engineering/College of Oil and Gas Engineering, Basrah University, Basra, Iraq
| | - Saja Mohsen
- Nanotechnology Advanced Material Research Center, University of Technology, Baghdad, Iraq
| | - Thamer Adnan Abdullah
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Endre Domokos
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
22
|
Pham TD, Bui VP, Pham TN, Le TMD, Nguyen KT, Bui VH, Nguyen TD. Adsorptive Removal of Anionic Azo Dye New Coccine Using Silica and Silica-gel with Surface Modification by Polycation. Polymers (Basel) 2021; 13:1536. [PMID: 34064803 PMCID: PMC8151926 DOI: 10.3390/polym13101536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/20/2023] Open
Abstract
In the present work, adsorption of anionic azo dye, new coccine (NCC) on silica and silica-gel in an aquatic environment was discovered. Effective conditions such as adsorption time, pH, the influence of dosage on NCC adsorption using strong polycation, poly-diallyl-dimethylammonium chloride (PDADMAC) modified silica (PMS) and PDADMAC modified silica-gel (PMSG) were systematically studied. The removal of NCC using PMS and PMSG were much higher than that using raw silica and silica-gel without PDADMAC in all pH ranges from 3 to 10. The adsorption of NCC onto PMS and PMSG was achieved maxima at the same conditions of contact time 30 min, pH 6. The optimum adsorbent dosages of PMS and PMSG for NCC removal were 10 and 20 mg·mL-1, respectively. Experimental results of NCC adsorption isotherms onto PMS and PMSG at different ionic strength were fitted by Langmuir and Freundlich models. The NCC removal efficiencies using PMS and PMSG were higher than 87%, indicating that PMS and PMSG are novel and reusable adsorbents for removal of anionic dye. Based on adsorption isotherms, and surface group changes after PDADMAC modification and NCC adsorption examined by Fourier transform infrared spectroscopy (FTIR), we demonstrate that electrostatic interaction between positively charged adsorbents' surfaces and negative sulfonic groups of NCC are the main driving force for anionic azo dye adsorption onto PMS and PMGS adsorbents.
Collapse
Affiliation(s)
- Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University—Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (V.P.B.); (T.N.P.)
| | - Viet Phuong Bui
- Faculty of Chemistry, University of Science, Vietnam National University—Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (V.P.B.); (T.N.P.)
| | - Thuy Nga Pham
- Faculty of Chemistry, University of Science, Vietnam National University—Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (V.P.B.); (T.N.P.)
| | - Thi Mai Dung Le
- Faculty of Environmental Sciences, University of Science, Vietnam National University—Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam;
| | - Kim Thuy Nguyen
- Vietnam-Russia Tropical Centre, 63 Nguyen Van Huyen, Cau Giay, Hanoi 100000, Vietnam;
| | - Van Hoi Bui
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam;
| | - The Dung Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University—Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (V.P.B.); (T.N.P.)
| |
Collapse
|
23
|
Gönder ZB, Kara EM, Celik BO, Vergili I, Kaya Y, Altinkum SM, Bagdatli Y, Yilmaz G. Detailed characterization, antibiotic resistance and seasonal variation of hospital wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16380-16393. [PMID: 33387316 DOI: 10.1007/s11356-020-12221-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This study investigates the presence of the different classes of micro-pollutants such as pharmaceutical active compounds (PhACs) (20 antibiotics, 8 analgesics and anti-inflammatories, 5 cytostatic agents, 7 β-blockers, 4 lipid regulators, 13 psychiatrics, 1 antidiabetic, 1 receptor antagonist, 1 local anaesthetic, 1 antihypertensive and their 5 metabolites), hormones (8 compounds), X-ray contrast agents (6 compounds), benzotriazoles (3 compounds) and pesticides (6 compounds), and antibiotic resistance in hospital wastewater (HWW) of a medical faculty in Istanbul, Turkey. In addition, the seasonal variations of the selected PhACs and X-ray contrast agents and antibiotic resistance were evaluated for 2 years in a total of eight samples. In the PhACs, sulfamethoxazole and its metabolite (4 N-acethyl-sulfamethoxazole) in the antibiotic group and paracetamol in the analgesic and anti-inflammatory group were found at 100% of frequency and the highest concentrations as 35, 43 and 210 μg/L, respectively. The mean concentrations of psychiatric compounds were found less than 0.25 μg/L except carbamazepine (1.36 μg/L). Bisphenol A in hormone group had the highest concentration up to 14 μg/L. In the hormone group compounds, 17-α-Ethinylestradiol and 17-β-Estradiol were detected at lower mean concentrations of 0.2 and 0.05 μg/L, respectively. 1H-benzotriazole had the highest concentration with the mean concentration of 24.8 μg/L in benzotriazole group compounds. The compounds in X-ray contrast agents group were noted as compounds detected at the highest concentration in HWW up to 3000 μg/L. Antibiotic resistance against azithromycin, clindamycin and trimethoprim-sulfamethoxazole antibiotics was observed around 50% in the winter period. The seasonal variation was detected for the most of the investigated PhACs, especially in antibiotic group which was in line with those significant differences in antibiotic resistance rates in the studied antibiotics between winter and summer seasons.
Collapse
Affiliation(s)
- Zeren Beril Gönder
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Emel Mataracı Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Berna Ozbek Celik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Ilda Vergili
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Yasemin Kaya
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Serdar Mehmet Altinkum
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, 34000, Istanbul, Turkey
| | - Yasar Bagdatli
- Environmental Management Unit, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, 34000, Istanbul, Turkey
| | - Gulsum Yilmaz
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey.
| |
Collapse
|
24
|
Preparation of Sodium Lignosulfonate/Chitosan Adsorbent and Application of Pb2+ Treatment in Water. SUSTAINABILITY 2021. [DOI: 10.3390/su13052997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial wastewater has brought huge disasters to water resources and soil and has seriously affected the growth of animals and plants. There is an urgent need for a green and efficient adsorbent to solve the problem of water pollution. Sodium lignosulfonate and chitosan undergo free radical polymerization to form a lignin/chitosan adsorbent, which is used to treat Pb2+ in water pollution. An orthogonal experiment was used to optimize the content of sodium lignosulfonate, chitosan, cross-linking agent and initiator to obtain the adsorbent with the best adsorption performance. The adsorbents were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis and zeta potentiometry. The influence of different conditions on the adsorption of heavy metal ions by lignosulfonate/chitosan adsorbent was explored, and a kinetic and isotherm model was established. The results showed that the adsorption capacity of Pb2+ was 345 mg g−1 when the adsorbent was 0.01 g, the concentration of heavy metal ions was 100 mg L−1 and pH was 7. The adsorption process of lignosulfonate/chitosan is a kind of spontaneous adsorption mode, which is mainly composed of electrostatic adsorption and chemical adsorption.
Collapse
|
25
|
Pham TD, Le TMA, Pham TMQ, Dang VH, Vu KL, Tran TK, Hoang TH. Synthesis and Characterization of Novel Hybridized CeO 2@SiO 2 Nanoparticles Based on Rice Husk and Their Application in Antibiotic Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2963-2973. [PMID: 33591197 DOI: 10.1021/acs.langmuir.0c03632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aims to synthesize a core-shell material of CeO2@SiO2 based on rice husk as a novel hybridized adsorbent for antibiotic removal. The phase structures of CeO2@SiO2 and CeO2 nanoparticles that were fabricated by a simple procedure were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared (FT-IR) spectroscopy, while their interfacial characterizations were performed by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), the Brunauer-Emmett-Teller (BET) method, and ζ-potential measurements. The removal efficiency of the antibiotic amoxicillin (AMX) using CeO2@SiO2 nanoparticles was much greater than that using SiO2 and CeO2 materials in solutions of different pH values. The optimum conditions for AMX removal using CeO2@SiO2 including contact time and adsorbent dosage were 120 min and 5 mg/mL, respectively. The maximum AMX removal using CeO2@SiO2 reached 100% and the adsorption capacity was 12.5 mg/g. Adsorption isotherms of AMX onto CeO2@SiO2 were fitted by Langmuir, Freundlich, and two-step adsorption models, while the adsorption kinetics of AMX achieved a better fit by the pseudo-second-order model than the pseudo-first-order model. The electrostatic and nonelectrostatic interactions between the zwitterionic form of AMX and the positively charged CeO2@SiO2 surface were controlled by adsorption. The effects of different organics such as humic acid, ionic surfactants, and pharmaceutical substances on AMX removal using CeO2@SiO2 were also thoroughly investigated. The high AMX removal efficiencies of about 75% after four regenerations and about 70% from an actual water sample demonstrate that CeO2@SiO2-based rice husk is a hybrid nanomaterial for antibiotic removal from water environments.
Collapse
Affiliation(s)
- Tien-Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Thi-Mai-Anh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Thi-My-Quynh Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Viet-Huy Dang
- High School of Education Sciences, University of Education, Vietnam National University, Hanoi; Kieu Mai, Phuc Dien, Bac Tu Liem, Hanoi 100000, Vietnam
| | - Khanh-Linh Vu
- High School of Education Sciences, University of Education, Vietnam National University, Hanoi; Kieu Mai, Phuc Dien, Bac Tu Liem, Hanoi 100000, Vietnam
| | - Trung-Kien Tran
- Hanoi-Amsterdam High School for the Gifted, Hoang Minh Giam, Trung Hoa, Cau Giay, Hanoi 100000, Vietnam
| | - Thu-Ha Hoang
- High School of Education Sciences, University of Education, Vietnam National University, Hanoi; Kieu Mai, Phuc Dien, Bac Tu Liem, Hanoi 100000, Vietnam
| |
Collapse
|
26
|
Yeasmin F, Mallik AK, Chisty AH, Robel FN, Shahruzzaman M, Haque P, Rahman MM, Hano N, Takafuji M, Ihara H. Remarkable enhancement of thermal stability of epoxy resin through the incorporation of mesoporous silica micro-filler. Heliyon 2021; 7:e05959. [PMID: 33521354 PMCID: PMC7820568 DOI: 10.1016/j.heliyon.2021.e05959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/23/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
For the first time, we incorporated mesoporous micro-silica (5 μm, pore size = 50 nm) as a filler in epoxy resin aiming to enter polymer into the pore of the silica. As expected, the thermal stability of the composite increased remarkably, followed by noteworthy thermal degradation kinetics when compared to the controlled cured epoxy resin. Composites were prepared by the direct dispersion of modified nano-silica, modified mesoporous micro-silica, unmodified mesoporous micro-silica, non-porous micro-silica, and irregular micro-silica of various pore sizes as fillers in diglycidyl ether of bisphenol-A epoxy resin via ultra-sonication and shear mixing, followed by oven-curing with 4,4-diaminodiphenyl sulfone. DSC and TGA analyses demonstrated a higher glass transition temperature (increased by 3.65–5.75 °C) and very high activation energy for thermal degradation (average increase = 46.2%) was obtained for the same unmodified silica composite compared to pure epoxy, respectively.
Collapse
Affiliation(s)
- Farzana Yeasmin
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abul K Mallik
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Adib H Chisty
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fataha N Robel
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Md Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Papia Haque
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nanami Hano
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| |
Collapse
|
27
|
Easy preparation of magnetic nanoparticles-rGO-chitosan composite beads: Optimization study on cefixime removal based on RSM and ANN by using Genetic Algorithm Approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129182] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Ogwugwa VH, Oyetibo GO, Amund OO. Taxonomic profiling of bacteria and fungi in freshwater sewer receiving hospital wastewater. ENVIRONMENTAL RESEARCH 2021; 192:110319. [PMID: 33069702 DOI: 10.1016/j.envres.2020.110319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Consistent discharges of hospital wastewaters (HWWs) pose ecological risk to the biome of the receiving environment with cumulative effect on its healthiness. Understanding the taxonomic profile of microorganisms in the impacted systems is required to establish taxa that are bio-indicators of toxicants, and provide possible taxa for mitigating ecotoxicity of the HWWs. Geochemistry, pollution status and ecotoxicity of heavy metals (HMs) in HWW-impacted sewer (LU) were assessed. The microbiome profiling was based on 16S rDNA and ITS of 18S rDNA metagenomes. The degree of HMs contamination exceeded 50 and HMs pollution load index of LU was severe (1,084), which consequently exerted severe risk (1,411,575 toxic response factors) with very high toxic responses of Co, Cu, Pb, and Cd. Eco-toxicological impact of the HMs on LU skewed microbiome towards Proteobacteria (43%), Actinobacteria (18%), and about 5% apiece for Chloroflexi, Acidobacteria, Plantomycetes, and Bacteroidetes. Likewise, the relative abundance of in LU inclined towards Ascomycota (59%), Basidiomycota (17%) and unclassified Eukarya_uc_p (16%). Exclusively found in LU sediments were 44,862 bacterial species and 42,881 fungi taxa, while 72,877 and 53,971 species of bacteria and fungi, respectively, were found missing. Extinction and emergence of bacteria and fungi taxa in LU were in response to HMs ecotoxicity and the need for natural attenuation processes respectively. The profiled taxa in LU may be plausible in bioremediation strategies of the impacted system, and in designing knowledge-based bioreactor system for the treatment of HWWs before discharge into the environment.
Collapse
Affiliation(s)
- Vincent Happy Ogwugwa
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos State, 101017, Nigeria.
| | - Ganiyu Oladunjoye Oyetibo
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos State, 101017, Nigeria.
| | - Olukayode Oladipupo Amund
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos State, 101017, Nigeria.
| |
Collapse
|
29
|
Ali S, Hassanin HA. Adsorptive removal of vitamin
B
6
and ciprofloxacin using polyurethane foam in pure and pharmaceutical preparations: Kinetic and equilibrium studies. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Samah Ali
- Chemistry Department, College of Science Taibah University Al‐Madinah Al‐Munawarah Saudi Arabia
- The National Organization for Drug Control and Research Giza Egypt
| | - Hanaa A. Hassanin
- Department of Chemistry, College of Science King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
30
|
Ahamad T, Naushad M, Ubaidullah M, Alshehri S. Fabrication of Highly Porous Polymeric Nanocomposite for the Removal of Radioactive U(VI) and Eu(III) Ions from Aqueous Solution. Polymers (Basel) 2020; 12:E2940. [PMID: 33316959 PMCID: PMC7763886 DOI: 10.3390/polym12122940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
In the present study, a polymeric nanocomposite, CoFe2O4@DHBF, was fabricated using 2,4 dihydroxybenzaldehyde and formaldehyde in basic medium with CoFe2O4 nanoparticles. The fabricated nanocomposite was characterized using FTIR, TGA, XRD, SEM, TEM, and XPS analyses. The analytical results revealed that the magnetic nanocomposite was fabricated successfully with high surface area 370.24 m2/g. The fabricated CoFe2O4@DHBF was used as an efficient adsorbent for the adsorption of U(VI) and Eu(III) ions from contaminated water. pH, initial concentration, adsorption time, and the temperature of the contaminated water solution affecting the adsorption ability of the nanocomposites were studied. The batch adsorption results exposed that the adsorption capacity for the removal of U(VI) and Eu(III) was found to be 237.5 and 225.5 mg/g. The adsorption kinetics support that both the metal ions follow second order adsorption kinetics. The adsorption isotherm well fits with the Langmuir adsorption isotherm and the correlation coefficient (R2) values were found to be 0.9920 and 0.9913 for the adsorption of U(VI) and Eu(III), respectively. It was noticed that the fabricated nanocomposites show excellent regeneration ability and about 220.1 and 211.3 mg/g adsorption capacity remains with U(VI) and Eu(III) under optimum conditions.
Collapse
Affiliation(s)
- Tansir Ahamad
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
| | - Mu. Naushad
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- School of Life and Allied Health Sciences, Glocal University, Saharanpur 247001, India
| | - Mohd Ubaidullah
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
| | - Saad Alshehri
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
| |
Collapse
|
31
|
Sagar P, Srivastava M, Prakash R, Srivastava SK. The fabrication of an MoS 2 QD-AuNP modified screen-printed electrode for the improved electrochemical detection of cefixime. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3014-3024. [PMID: 32930161 DOI: 10.1039/d0ay00899k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report a voltammetric method for the nanomolar detection of cefixime, a third-generation antibiotic. The determination of cefixime is validated on a glassy carbon electrode (GCE) as well as on a screen-printed carbon electrode (SPCE). In the present study, we have reported a facile "one step simple hydrothermal synthesis" of MoS2 quantum dots and with the oxidation of aurochloric acid for the further formation of an MoS2 QD-AuNP composite. The as-synthesized nanocomposite was characterized via UV-Vis spectroscopy, FTIR spectroscopy, XRD, TEM and EDX techniques, and further applied in the modification of working electrodes, showing excellent electroactivity. The sensing of cefixime was done via cyclic and differential pulse voltammetry techniques. The presence of the only anodic peak in the voltammogram reveals the irreversible oxidation of cefixime in the potential range of about 1.3 ± 0.1 V vs. Ag/AgCl. The study was also performed at different scan rates, which indicate a diffusion-controlled mechanism. The proposed cefixime sensor showed a linear response in the concentration range of 0.33-90.82 μM (at S/N = 3) with a limit of detection (LOD) of 3.9-4.5 nm. The electrochemical sensitivity is calculated as 8.63 μA μM-1 cm-2 and 7.07 μA μM-1 cm-2 in buffer and pharmaceutical formulation (commercially available cefixime tablet), respectively. The effects of several interferents were also investigated. The proposed sensor is effectively used for estimating cefixime in phosphate buffer and the commercially available cefixime tablets with no cross-reactivity or matrix effects and shows a promising prospect for real applications.
Collapse
Affiliation(s)
- Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Monika Srivastava
- School of Materials Science and Technology, IIT (BHU) Varanasi, 221005, India
| | - Rajiv Prakash
- School of Materials Science and Technology, IIT (BHU) Varanasi, 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
32
|
Szewczuk-Karpisz K, Bogatyrov VM, Galaburda M, Sokołowska Z. Study on Adsorption and Aggregation in the Mixed System of Polyacrylamide, Cu(II) Ions and Innovative Carbon-Silica Composite. Polymers (Basel) 2020; 12:polym12040961. [PMID: 32326104 PMCID: PMC7240755 DOI: 10.3390/polym12040961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 11/16/2022] Open
Abstract
The paper presents an original study on adsorption and aggregation phenomena in a mixed system consisting of a macromolecular compound, heavy metal ions and an innovative adsorbent. The authors used ionic polyacrylamides (PAM), Cu(II) ions and carbon–silica composite (C-SiO2) in the experiments. Such a system has not yet been described in the literature and therefore, the article is of significant novelty and great importance. The composite was prepared by mixing phenol–formaldehyde resin with silica and pyrolysis at 800 °C. The adsorbed amounts of Cu(II) ions and PAM were determined spectrophotometrically. C-SiO2 was characterized using potentiometric titration, microelecrophoresis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. In turn, the C-SiO2 aggregation was established turbidimetrically as well as using a particle size analyzer. The obtained results indicated that both Cu(II) ions and ionic polyacrylamide were adsorbed on the composite surface at pH 6. The highest noted adsorbed amounts were 9.8 mg/g for Cu(II) and 35.72 mg/g for CT PAM-25%. Cu(II) ions increased the anionic PAM adsorbed and reduced the cationic PAM one. The adsorption of anionic PAM (50 ppm) stimulated the solid aggregation significantly. What is more, Cu(II) ions enhanced this process. The size of particles/aggregates formed without additives equaled 0.44 μm, whereas in the mixed Cu(II)/AN PAM system, they were even at 1.04 μm.
Collapse
Affiliation(s)
- Katarzyna Szewczuk-Karpisz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-744-50-61
| | - Viktor M. Bogatyrov
- O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kiev, Ukraine; (V.M.B.); (M.G.)
| | - Mariia Galaburda
- O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kiev, Ukraine; (V.M.B.); (M.G.)
| | - Zofia Sokołowska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| |
Collapse
|
33
|
Nguyen TH, Nguyen TTL, Pham TD, Le TS. Removal of Lindane from Aqueous Solution Using Aluminum Hydroxide Nanoparticles with Surface Modification by Anionic Surfactant. Polymers (Basel) 2020; 12:polym12040960. [PMID: 32326112 PMCID: PMC7240583 DOI: 10.3390/polym12040960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
In the present study, we investigated the removal of an emerging pesticide lindane from aqueous solution using synthesized aluminum hydroxide Al(OH)3 (bayerite) nanomaterials with surface modification by an anionic surfactant sodium dodecyl sulfate (SDS). The Al(OH)3 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and zeta potential. The lindane removal using SDS-modified nano-aluminum hydroxide nanoparticles (SMNAH) achieved removal of up to 93.68%, which was 3.3 times higher than that of nano-aluminum hydroxide nanoparticles. The adsorptive removal conditions were studied and found to have an adsorption time of 60 min, a pH of 6, an adsorbent dosage of 25 mg/mL and an ionic strength of 10 mM NaCl. After reusing four times, the removal efficiency of lindane using SMNAH still reached 75%. Two-step adsorption can fit adsorption isotherms of lindane onto SMNAH at two salt concentrations. On the basis of the change in zeta potential, surface functional groups and adsorption isotherms, we suggest that the formation of a bilayer micelle induced the removal of lindane.
Collapse
Affiliation(s)
- Thi Hang Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (T.H.N.); (T.T.L.N.)
- Department of Infrastructure and Urban Environmental Engineering, Hanoi Architectural University, Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam
| | - Thi Thuy Linh Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (T.H.N.); (T.T.L.N.)
| | - Tien Duc Pham
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (T.H.N.); (T.T.L.N.)
- Correspondence: or (T.D.P.); (T.S.L.); Tel.: +84-243-825-3503 (T.D.P. & T.S.L.); Fax: +84-243-824-1140 (T.D.P. & T.S.L.)
| | - Thanh Son Le
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam; (T.H.N.); (T.T.L.N.)
- Correspondence: or (T.D.P.); (T.S.L.); Tel.: +84-243-825-3503 (T.D.P. & T.S.L.); Fax: +84-243-824-1140 (T.D.P. & T.S.L.)
| |
Collapse
|
34
|
Adsorptive Removal of Antibiotic Ciprofloxacin from Aqueous Solution Using Protein-Modified Nanosilica. Polymers (Basel) 2020; 12:polym12010057. [PMID: 31906267 PMCID: PMC7023575 DOI: 10.3390/polym12010057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
The present study aims to investigate adsorptive removal of molecular ciprofloxacin using protein-modified nanosilica (ProMNS). Protein was successfully extracted from Moringa seeds while nanosilica was synthesized from rice husk. Fourier-transform infrared (FTIR), ultraviolet visible (UV-Vis) and high-performance liquid chromatography (HPLC) were used to evaluate the characterization of protein. Adsorption of protein onto nanosilica at different pH and ionic strength was thoroughly studied to modify nanosilica surface. The removal efficiency of antibiotic ciprofloxacin (CFX) increased from 56.84% to 89.86% after surface modification with protein. Effective conditions for CFX removal using ProMNS were systematically optimized and found to be pH 7.0, adsorption time 90 min, adsorbent dosage 10 mg/mL, and ionic strength 1 mM KCl. A two-step model was successfully used to fit the adsorption isotherms of CFX onto ProMNS at different ionic strength while a pseudo-second-order model could fit adsorption kinetic of CFX onto ProMNS very well. Maximum adsorption capacity was very high that reached to 85 mg/g. Adsorption of CFX onto ProMNS decreased with increasing KCl concentration, suggesting that adsorption of CFX onto ProMNS is mainly controlled by electrostatic attraction between positively charged ProMNS surface and anionic species of CFX. Adsorption mechanisms of CFX onto ProMNS were discussed in detail based on adsorption isotherms, the change in surface charge by zeta potentail and the change in functional groups by FT-IR. The removal of CFX after three regenerations was greater than 73% while CFX removal from an actual hospital wastewater using ProMNS reached to 70%. Our results suggest that ProMNS is a new and eco-friendly adsorbent to remove antibiotics from aqueous solutions.
Collapse
|