1
|
|
2
|
Banerjee B, Paria S. Effect of Electrolytes on Solution and Interfacial Behaviors of Double Chain Cationic-Nonionic Surfactant Mixtures for Hydrophobic Surface Wetting and Oil/Water Emulsion Stability Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10560-10572. [PMID: 34424690 DOI: 10.1021/acs.langmuir.1c01672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The solution behaviors of the binary mixture of double chain cationic surfactant didodecyldimethylammonium bromide (DDAB) with nonionic surfactants of varied head groups, EO-9 and EO-40, in the presence and absence of electrolytes were studied and found nonideal behavior. The different physicochemical properties such as Gibb's surface excess (Γ), minimum area per molecule (Amin), and interaction parameters at bulk (βM) and interface (βσ) were calculated. In the presence of nonionic surfactants, lowering of CMC, CVC, and surface tension at these two concentrations of DDAB were observed. The βM and βσ values indicate strong interaction between DDAB and EO-40 mixed system. Further, addition of electrolytes to the mixed systems show increased interaction and change of physicochemical properties because of the combination of electrical and salting out effects.
Collapse
Affiliation(s)
- Barnali Banerjee
- Interfaces and Nanomaterials Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, Orissa, India
| | - Santanu Paria
- Interfaces and Nanomaterials Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, Orissa, India
| |
Collapse
|
3
|
Lopez CG, Richtering W. Oscillatory rheology of carboxymethyl cellulose gels: Influence of concentration and pH. Carbohydr Polym 2021; 267:118117. [PMID: 34119123 DOI: 10.1016/j.carbpol.2021.118117] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
The flow properties of ionic polysaccharides are determined by the interplay of electrostatic and hydrophobic interactions, which depend on the ionic strength and pH of the solvent. We explore the LVE and LAOS rheology of carboxymethyl cellulose (CMC) in aqueous media, focusing on its gelling behaviour. We find that addition of HCl promotes gel formation and addition of NaOH suppresses it. The former effect is interpreted as being caused by a decrease of the charge density of the polymer, which facilitates interchain associations and the later effect can be assigned to solubilisation of cellulose backbone by NaOH. Our results along with a review of the literature allow us to establish the concentration regimes and associated properties of physical gels of carboxymethyl cellulose. At neutral pH, the storage modulus of NaCMC gels of varying molecular weight and DS at a given concentration does not vary by more than a factor 5.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
4
|
Campelo MDS, Melo EO, Arrais SP, Nascimento FBSAD, Gramosa NV, Soares SDA, Ribeiro MENP, Silva CRD, Júnior HVN, Ricardo NMPS. Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Fernández-Peña L, Abelenda-Nuñez I, Hernández-Rivas M, Ortega F, Rubio RG, Guzmán E. Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Adv Colloid Interface Sci 2020; 282:102203. [PMID: 32629241 DOI: 10.1016/j.cis.2020.102203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
The understanding of the deposition of oppositely charged polyelectrolytes-surfactant mixtures onto solid surfaces presents a high interest in current days due to the recognized impact of the obtained layers on different industrial sectors and the performance of several consumer products (e.g. formulations of shampoos and hair conditioners). This results from the broad range of structures and properties that can present the mixed layers, which in most of the cases mirror the association process occurring between the polyelectrolyte chains and the oppositely charged surfactants in the bulk. Therefore, the understanding of the adsorption processes and characteristics of the adsorbed layers can be only attained from a careful examination of the self-assembly processes occurring in the solution. This review aims to contribute to the understanding of the interaction of polyelectrolyte-surfactant mixtures with solid surfaces, which is probably one of the most underexplored aspects of these type of systems. For this purpose, a comprehensive discussion on the correlations between the aggregates formed in the solutions and the deposition of the obtained complexes upon such association onto solid surfaces will be presented. This makes it necessary to take a closer look to the most important forces driving such processes.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Centro de Espectroscopia Infrarroja-Raman-Correlación, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain.
| | - Irene Abelenda-Nuñez
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - María Hernández-Rivas
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain.
| |
Collapse
|