Zhao L, Zhang J. Intermolecular interaction of diamine-diol binary system: A mini-review.
Adv Colloid Interface Sci 2022;
304:102662. [PMID:
35453067 DOI:
10.1016/j.cis.2022.102662]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
The highly selective chemical reaction of carbon dioxide with organic amines is considered to a mature technology and a feasible initial path for carbon capture. In order to solve the disadvantages of high volatility, equipment corrosion and high energy consumption of traditional organic amines, amine alcohol "mixture based" solution has been developed and showed excellent carbon dioxide absorption capacity, which is due to the positive effect of intermolecular interaction in amine alcohol "mixture based" solution system on thermodynamic properties. However, the influencing factors of the intermolecular force in multicomponent solution system are complex, including the chemical, physical, structural effects. Therefore, it is necessary to comprehensively use a variety of characterization methods to systematically understand the form of intermolecular interaction in multicomponent solution system. This review systematically discusses the determination of intermolecular interactions in diamine-diol multicomponent solutions by three mainstream research methods, theoretical calculation method, spectral method, and thermodynamic method, aiming to provide a theoretical reference for the industrial production, the supplement to experimental data, and construction and understanding of theoretical models of multicomponent solution system.
Collapse