1
|
Kaiser M, Kantorovich SS. The importance of being a cube: Active cubes in a microchannel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Xiong Y, Lin Z, Mostarac D, Minevich B, Peng Q, Zhu G, Sánchez PA, Kantorovich S, Ke Y, Gang O. Divalent Multilinking Bonds Control Growth and Morphology of Nanopolymers. NANO LETTERS 2021; 21:10547-10554. [PMID: 34647751 PMCID: PMC8704199 DOI: 10.1021/acs.nanolett.1c03009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Indexed: 05/22/2023]
Abstract
Assembly of nanoscale objects into linear architectures resembling molecular polymers is a basic organization resulting from divalent interactions. Such linear architectures occur for particles with two binding patches on opposite sides, known as Janus particles. However, unlike molecular systems where valence bonds can be envisioned as pointlike interactions nanoscale patches are often realized through multiple molecular linkages. The relationship between the characteristics of these linkages, the resulting interpatch connectivity, and assembly morphology is not well-explored. Here, we investigate assembly behavior of model divalent nanomonomers, DNA nanocuboid with tailorable multilinking bonds. Our study reveals that the characteristics of individual molecular linkages and their collective properties have a profound effect on nanomonomer reactivity and resulting morphologies. Beyond linear nanopolymers, a common signature of divalent nanomonomers, we observe an effective valence increase as linkages lengthened, leading to the nanopolymer bundling. The experimental findings are rationalized by molecular dynamics simulations.
Collapse
Affiliation(s)
- Yan Xiong
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Zhiwei Lin
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Deniz Mostarac
- Computational
and Soft Matter Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- MMM
Mathematics-Magnetism-Materials, Research Platform, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Brian Minevich
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qiuyuan Peng
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Guolong Zhu
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Pedro A. Sánchez
- Computational
and Soft Matter Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Sofia Kantorovich
- Computational
and Soft Matter Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Department
of Mathematical and Theoretical Physics, Institute of Mathematics
and Natural Sciences, Ural Federal University, Ekaterinburg, 620026, Russia
- MMM
Mathematics-Magnetism-Materials, Research Platform, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Yonggang Ke
- Wallace H.
Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Oleg Gang
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
3
|
Kaiser M, Kantorovich SS. Flux and separation of magneto-active superballs in applied fields. Phys Chem Chem Phys 2021; 23:23827-23835. [PMID: 34647560 PMCID: PMC8549445 DOI: 10.1039/d1cp03343c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The term "active matter" describes a class of out-of-equilibrium systems, whose ability to transform environmental to kinetic energy is sought after in multiple fields of science. A challenge that still remains is to craft nanometer-sized active particles, whose motion can be efficiently directed by externally applied bio-noninvasive stimuli. Adding a magnetic component and therefore being able to direct the motion of active nanoparticles with an applied magnetic field is one of the promising solutions in the field. In this study, we employ molecular dynamics simulations to predict an external field-induced flow that arises in mixtures of magneto-active nanosized cubic and spherical particles with distinct mutual orientations between magnetization and propulsion. We explain why the flux of the suspended particles in the field direction does not only depend on the angle between the active force, driving a particle forward, and the orientation of its magnetization, but also on particle shape and inter-particle interactions. Our results show that by tuning those parameters, one can achieve complete separation of particles according to their magnetization orientation. Based on our findings, along with optimizing the cargo properties of magneto-active nano-units, the actual composition of the magneto-active particle suspension can be characterized.
Collapse
Affiliation(s)
- Martin Kaiser
- University of Vienna, Physics Faculty/Research Platform MMM Mathematics-Magnetism-Materials, Vienna, Austria.
| | - Sofia S Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.,Ural Federal University, Russian Federation/MMM Mathematics-Magnetism-Materials, Lenin Av. 51, Ekaterinburg 620000, Vienna, Austria
| |
Collapse
|
4
|
Kaiser M, Sánchez PA, Samanta N, Chakrabarti R, Kantorovich SS. Directing the Diffusion of a Nonmagnetic Nanosized Active Particle with External Magnetic Fields. J Phys Chem B 2020; 124:8188-8197. [DOI: 10.1021/acs.jpcb.0c05791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Kaiser
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Pedro A. Sánchez
- Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation
- Wolfgang Pauli Institute c/o University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Nairhita Samanta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
- Indian Institute of Technology Bombay, Mumbai, India
| | - Sofia S. Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation
| |
Collapse
|