1
|
Tabatabai ASD, Dehghanian E, Mansouri-Torshizi H. Comparative Linkage of Novel Anti-Tumor Pd(II) Complex with Bio-Macromulecules: Fluorescence, UV-Vis, DFT, Molecular Docking and Molecular Dynamics Simulation Studies. J Fluoresc 2024:10.1007/s10895-024-03820-8. [PMID: 38967860 DOI: 10.1007/s10895-024-03820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
A novel mononuclear palladium complex, [Pd(dach)(SSA)], where dach and SSA are diaminocyclohexane and sulfosalicylic acid ligands, respectively, has been synthesized and identified utilizing analytical and spectral methods. DFT calculations, namely geometry optimization, MEP, HOMO-LUMO and NBO analysis, have been conducted at B3LYP level by aug-ccpVTZ-PP and 6-311G(d, p) basis sets. NBO and HOMO-LUMO analysis exhibited that the palladium compound is stable. MEP showed the potential sites of molecule for the interaction. By employing MTT assay, the cytotoxicity activity of the aforesaid compound was examined on K562 cell line, which revealed a proper activity compared to cisplatin. To ascertain the lipophilicity of the newly made compound, the partition coefficient measurement was accomplished, which follows the order of cisplatin < Pd(II) complex. Next, investigation of binding properties of the studied compound with DNA of calf thymus and BSA were done by spectroscopic (CD, fluorescence emission and electronic adsorption) and non-spectroscopic (viscosity measurements, DNA gel electrophoresis, molecular docking and molecular dynamics simulation) methods. The outcomes of CD and UV-Vis spectroscopy demonstrated that the title compound refolded the protein via increasing the alpha helix percentage. The data obtained from UV-Vis studies indicated the non-intercalative mutual action between Pd(II) complex with DNA. It also revealed that the Kapp magnitude of CT-DNA (7.43 × 104 M- 1) is higher than the BSA (5.17 × 103 M- 1), and L1/2 (midpoint of transition) of CT-DNA (5 µM) is lower than the BSA (5.7 µM), indicating that the complex has a greater binding affinity to CT-DNA than BSA. Fluorescence quenching mechanism of the two biomolecules by the metal complex is static and the calculated thermodynamic parameters (ΔS° < 0 and ΔH° < 0) suggested the hydrogen bonding and/ or van der Waals forces with DNA and BSA. Further, molecular docking indicated that the studied compound fits into the groove of DNA and the site I of BSA. The stability of metal compound-DNA/-BSA in the presence of H2O solvent and over the time were validated via molecular dynamics simulation.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
2
|
Adwin Jose P, Sankarganesh M, Dhaveethu Raja J, Arumugam S. DNA/BSA interaction, anticancer, antimicrobial and catalytic applications of synthesis of nitro substituted pyrimidine-based Schiff base ligand capped nickel nanoparticles. J Biomol Struct Dyn 2024; 42:5931-5945. [PMID: 37394819 DOI: 10.1080/07391102.2023.2230283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The objective of this research was to create stable nickel nanoparticles using nickel chloride salt and a Schiff base ligand called DPMN. The synthesis process involved a two-step phase transfer procedure. Spectroscopic techniques such as UV-Visible and FT-IR were used to confirm the formation of ligand-stabilized nickel nanoparticles (DPMN-NiNPs). To analyze the size, surface morphology, and quality of DPMN-NiNPs, SEM and TEM techniques were utilized. In vitro studies were performed to investigate the potential anticancer activity of the synthesized compounds against three different cancer cell lines and one normal cell line, and the results were compared to those of cis-platin. The researchers also conducted tests to determine the ability of DPMN-NiNPs to bind to CT-DNA using various techniques such as electronic absorption, fluorescence, viscometric, and cyclic voltammetric. The results showed that the synthesized DPMN-NiNPs exhibited good DNA binding ability, which was further validated by denaturation of DNA using thermal and sonochemical methods. The researchers also investigated the antimicrobial and antioxidant activities of DPMN-NiNPs, which demonstrated better biological activities than DPMN alone. Furthermore, the synthesized nano compounds were found to selectively damage cancer cell lines without harming normal cell lines. Finally, the researchers examined the potential of DPMN-NiNPs as a catalyst in dye degradation by testing its ability to decompose methyl red dye using UV-Visible spectroscopy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Paulraj Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Sakthivel Arumugam
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| |
Collapse
|
3
|
Karthik P, Jose PA, Chellakannu A, Gurusamy S, Ananthappan P, Karuppathevan R, Vasantha VS, Rajesh J, Ravichandran S, Sankarganesh M. Green synthesis of MnO 2 nanoparticles from Psidium guajava leaf extract: Morphological characterization, photocatalytic and DNA/BSA interaction studies. Int J Biol Macromol 2024; 258:128869. [PMID: 38114013 DOI: 10.1016/j.ijbiomac.2023.128869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
In this work, a simple, efficient and eco-friendly green synthesis of manganese dioxide nanoparticles (MnO2NPs) by Psidium guajava leaf extract was described. Fourier-Transform infrared spectra results revealed that involvement of the plant extract functional groups in the formation of MnO2NPs. The UV-vis absorption spectra of the synthesized MnO2NPs exhibited absorption peaks at 374 nm, which were attributed to the band gap of the MnO2NPs. Crystal phase identification of the MnO2NPs were characterized by X-ray diffraction analysis and the formation of crystalline MnO2NPs have been confirmed. Furthermore, scanning electron microscopy analysis showed that the synthesized MnO2NPs have a spherical in shape. Interestingly, the prepared green synthesized MnO2NPs showed catalytic degradation activity for malachite green dye. Malachite green's photocatalytic degradation was detected spectrophotometrically in the wavelength range of 250-900 nm, and it was discovered to have a photodegradation efficiency of 75.5 % within 90 min when exposed to solar radiation. Green synthesized MnO2NPs are responsible for this higher activity. An interaction between synthesized NPs and biomolecules, including CT-DNA and BSA was also evaluated. The spectrophotometric and Fluoro spectroscopic analyses indicate a gradual reduction in peak intensities and shifts in wavelengths, indicating binding and affinity between the NPs and the biomolecules.
Collapse
Affiliation(s)
- Palani Karthik
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | - Paulraj Adwin Jose
- Department of Science and Humanities (Chemistry), E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu 611 002, India
| | - Arunbalaji Chellakannu
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | | | - Periyasamy Ananthappan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | - Ramki Karuppathevan
- Department of Immunology, School of Biological Science, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | - Jegathalaprathaban Rajesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India.
| | - Siranjeevi Ravichandran
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India.
| |
Collapse
|
4
|
Synthesis of biologically active tungsten nanoparticles stabilized by toluene soluble Vitex negundo extracts and evaluation of their antimicrobial, antioxidant and anticancer properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Adwin Jose P, Sankarganesh M, Dhaveethu Raja J, Senthilkumar GS, Nandini Asha R, Raja SJ, Sheela CD. Bio-inspired nickel nanoparticles of pyrimidine-Schiff base: In vitro anticancer, BSA and DNA interactions, molecular docking and antioxidant studies. J Biomol Struct Dyn 2022; 40:10715-10729. [PMID: 34243683 DOI: 10.1080/07391102.2021.1947382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this work, interactions of pyrimidine derivative Schiff base ligand (DMPMM) were studied and its stabilized powder nickel nanoparticles (DMPMM-NiNPs) were synthesized and various biological studies were evaluated. DNA binding studies of CT-DNA with prepared compounds in Tris-HCl/NaCl buffer were carried out by traditional UV-Visible and fluorescence spectroscopic methods, viscosity measurements and cyclic voltammetry. Results showed that the small scale of DMPMM had less activity to interact with biological systems and when it assembled on nickel nanoparticles surface the activity increased. Thermal denaturation and sonochemical denaturation studies of DNA with the presence and the absence of our compounds also were done by UV-Visible spectroscopic method and its results indicated that the synthesized compounds increased the denaturation temperature. BSA binding studies of synthesized compounds were done by UV-Visible and fluorescence spectroscopy. Molecular docking of prepared ligand and its nanoparticles with biomolecules (DNA and BSA) were studied. Antimicrobial studies of the DMPMM and DMPMM-NiNPs were carried out by Agar-Agar well diffusion method. Anticancer studies results evidenced that the synthesized DMPMM-NiNPs had good selectivity to control the growth of cancer cells without damaging the normal cells. Various antioxidant scavenging studies results have shown that DMPMM and DMPMM-NiNPs have significant antioxidant activity. HighlightsStable and solid nickel nanoparticles were prepared.The size of the prepared nickel nanoparticles was nearly 3 to 8 nm.Organic ligand capped nickel nanoparticles interacted with DNA and BSA.Ni nanoparticles increased the denaturation temperature of DNA.It was found to have good anticancer activity with fewer side effects than cisplatin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Paulraj Adwin Jose
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, The American College, Madurai, Tamil Nadu, India.,Laboratory of Inorganic Synthesis and Bioinspired Catalysis, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
6
|
Bhattacharjee G, Gohil J, Gohil N, Chaudhari H, Gangapuram B, Khambhati K, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Biosynthesis and characterization of Serratia marcescens derived silver nanoparticles: Investigating its antibacterial, anti-biofilm potency and molecular docking analysis with biofilm-associated proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Antitumor Activity against A549 Cancer Cells of Three Novel Complexes Supported by Coating with Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms23062980. [PMID: 35328401 PMCID: PMC8950742 DOI: 10.3390/ijms23062980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
A novel biologically active organic ligand L (N’-benzylidenepyrazine-2-carbohydrazonamide) and its three coordination compounds have been synthesized and structurally described. Their physicochemical and biological properties have been thoroughly studied. Cu(II), Zn(II), and Cd(II) complexes have been analyzed by F-AAS spectrometry and elemental analysis. The way of metal–ligand coordination was discussed based on FTIR spectroscopy and UV-VIS-NIR spectrophotometry. The thermal behavior of investigated compounds was studied in the temperature range 25–800 °C. All compounds are stable at room temperature. The complexes decompose in several stages. Magnetic studies revealed strong antiferromagnetic interaction. Their cytotoxic activity against A549 lung cancer cells have been studied with promising results. We have also investigated the biological effect of coating studied complexes with silver nanoparticles. The morphology of the surface was studied using SEM imaging.
Collapse
|
8
|
Jose PA, Sankarganesh M, Raja JD, Sakthivel A, Annaraj J, Jeyaveeramadhavi S, Girija A. Spectrophotometric and fluorometric detection of DNA/BSA interaction, antimicrobial, anticancer, antioxidant and catalytic activities of biologically active methoxy substituted pyrimidine-ligand capped copper nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120454. [PMID: 34666266 DOI: 10.1016/j.saa.2021.120454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
New Schiff base ligand (DPMN) was synthesized from the condensation of 2-hydroxy-5-nitrobenzaldehyde and 2-amino-4,6-dimethoxypyrimidine which was confirmed by spectroscopic and analytical methods. Solid air stable copper nanoparticles (DPMN-CuNPs) were synthesized from its copper chloride salt and it is stabilized by the prepared Schiff base ligand by phase transfer assisted synthesis which is a modified Brust-Schiffrin technique. The formation of ligand stabilized copper nanoparticles was confirmed by UV-Visible and FT-IR spectroscopic techniques. The size, surface morphology and quality of DPMN-CuNPs were analyzed by SEM and TEM techniques. Antioxidant activities of DPMN and DPMN-CuNPs with DPPH, SOD, peroxide and nitrous oxide were analyzed by electronic absorption spectroscopy. DNA interaction between DPMN and DPMN-CuNPs with CT-DNA was carried out using electronic absorption, fluorescence, viscometric measurements and cyclic voltammetric techniques. Interaction between BSA and the synthesized compounds analyzed by electronic absorption spectroscopy, Antimicrobial studies confirmed that the synthesized DPMN-CuNPs possess significant biological activities than DPMN. Anticancer results suggest that prepared DPMN-CuNPs have significant anticancer activity against different cancer cell lines and least toxic effect against the normal (NHDF) cell line. Other than the positive response in biological evaluation, our DPMN-CuNPs possess good catalytic activity in methyl orange reduction, methylene blue degradation and nitro phenol reduction.
Collapse
Affiliation(s)
- P Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College (Autonomous), Nagapattinum, Tamil Nadu 611 002, India
| | - M Sankarganesh
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - J Dhaveethu Raja
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India.
| | - A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu 626 005, India
| | - J Annaraj
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | - S Jeyaveeramadhavi
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India
| | - A Girija
- Department of Chemistry, Velumanokaran Arts and Science College for Women, Ramanathapuram, Tamil Nadu 623 504, India
| |
Collapse
|
9
|
Saleem SHS, Sankarganesh M, Raja JD, Jose PRA, Sakthivel A, Jeyakumar TC, Asha RN. Synthesis, characterization, DFT calculation, biological and molecular docking of Cu(II) complex of pyrimidine derived Schiff base ligand. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Sankarganesh M, Adwin Jose PR, Dhaveethu Raja J, Vijay Solomon R, Dorothy Sheela C, Gurusamy S. Bioactive platinum complex of ligand bearing pyrimidine skeleton: DNA/BSA binding, molecular docking, anticancer, antioxidant and antimicrobial activities. J Biomol Struct Dyn 2021; 40:6683-6696. [PMID: 33634734 DOI: 10.1080/07391102.2021.1889667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new octahedral platinum complex [PtLCl4] of Schiff base ligand containing pyrimidine and morpholine skeleton (where, L is 4,6-dichloropyrimidin-5-yl)methylene)-2-morpholinoethanamine) was isolated and characterized by elemental analysis, 1H-NMR, FTIR, UV-visible and ESI-MS techniques. DNA interaction of isolated compounds with calf thymus (CT-DNA) was explored by UV-vis absorption, fluorescence, cyclic voltametric and viscometric methods. The result shows that prepared compounds can interact with CT-DNA through electrostatic interactions. Bovine serum album (BSA) binding behavior of isolated compounds was also studied by UV-vis absorption and fluorescence techniques. Both the spectroscopic results suggest that the isolated ligand and its complex bind with BSA through static quenching. The optimized structure of ligand and platinum complex were achieved by the DFT calculations. Moreover, molecular docking of ligand and its complex were studied. These analysis results reveal that ligand has low binding affinity on DNA and BSA molecules in contrast to its complex. In vitro anticancer activity of isolated compounds toward normal cell line (NHDF) as well as cancer cell lines (MCF-7, HepG2, HeLa and A549) was studied by MTT assay. The results supports that isolated platinum complex can control the growth of cancer cells (MCF-7, 20.12 ± 1.00 µg/mL; HepG2, 32.2 ± 1.69 µg/mL; HeLa, 24.68 ± 1.29 µg/mL; A549, 23.46 ± 1.17 µg/mL) without inhibiting the normal cell line (NHDF, 109.26 ± 5.46 µg/mL). Antioxidant and antimicrobial activities of isolated compounds indicate that ligand and Pt complex are found to have good radical scavenging against four different free radicals and antimicrobial abilities on E. coli and C. albicans antimicrobial species. HighlightsPlatinum complex of Schiff base with pyrimidine and morpholine linkage was synthesized.Pt complex has better biomolecular interaction with DNA and BSA.Molecular docking of Pt complex with DNA and BSA has been studiedPt complex has good anticancer activities.Pt complex has better antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Murugesan Sankarganesh
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu, India.,Laboratory of Inorganic Synthesis and Bioinspired Catalysis, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Paul Raj Adwin Jose
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram (D.T.), Tamil Nadu, India
| | | | | | | | | |
Collapse
|
11
|
Novel metal(II) complexes with pyrimidine derivative ligand: synthesis, multi-spectroscopic, DNA binding/cleavage, molecular docking with DNA/BSA, and antimicrobial studies. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02737-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Revathi N, Sankarganesh M, Dhaveethu Raja J, Vinoth Kumar GG, Sakthivel A, Rajasekaran R. Bio-active mixed ligand Cu(II) and Zn(II) complexes of pyrimidine derivative Schiff base: DFT calculation, antimicrobial, antioxidant, DNA binding, anticancer and molecular docking studies. J Biomol Struct Dyn 2020; 39:3012-3024. [DOI: 10.1080/07391102.2020.1759454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Virudhunagar, Tamil Nadu, India
- Department of Chemistry, Manonmanium Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India
| | | | | | - Arumugam Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|